Radio Modulation Classification Using Deep Residual Neural Networks

被引:2
作者
Abbas, Adeeb [1 ]
Pano, Vasil [1 ]
Mainland, Geoffrey [2 ]
Dandekar, Kapil [1 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
来源
2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM) | 2022年
基金
美国国家科学基金会;
关键词
machine learning; convolution networks; deep learning; modulation recognition; radio frequency; RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new deep residual network for Automatic Modulation Classification, OPResNet-18. It achieves state-of-the-art accuracy on the RadioML 2016.10a data set. We train the proposed model and other state-of-the-art networks with augmented data by adding a Carrier Frequency Offset (CFO). We find that the previously proposed IQNet-3 is robust to CFO. We demonstrate that this robustness allows the performance of IQNet-3 to be further improved through data augmentation in contrast to existing neural networks that cannot handle CFO. Finally, we provide evidence that standard data pre-processing techniques for time-domain data that reportedly perform well in many domains do not perform as well as a simple alternative, the outer product, in the IQ domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Automatic Modulation Classification with Deep Neural Networks
    Harper, Clayton A.
    Thornton, Mitchell A.
    Larson, Eric C.
    ELECTRONICS, 2023, 12 (18)
  • [2] Modulation Recognition Using Hierarchical Deep Neural Networks
    Karra, Krishna
    Kuzdeba, Scott
    Petersen, Josh
    2017 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (IEEE DYSPAN), 2017,
  • [3] RobustRMC: Robustness Interpretable Deep Neural Network for Radio Modulation Classification
    Chen, Jinyin
    Liao, Danxin
    Zheng, Shilian
    Ye, Linhui
    Jia, Chenyu
    Zheng, Haibin
    Xiang, Sheng
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1218 - 1240
  • [4] Automatic Modulation Classification for Adaptive OFDM Systems Using Convolutional Neural Networks With Residual Learning
    Kumar, Anand
    Srinivas, Keerthi Kumar
    Majhi, Sudhan
    IEEE ACCESS, 2023, 11 : 61013 - 61024
  • [5] Pattern Recognition of Modulation Signal Classification Using Deep Neural Networks
    Venugopal, D.
    Mohan, V
    Ramesh, S.
    Janupriya, S.
    Lim, Sangsoon
    Kadry, Seifedine
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (02): : 545 - 558
  • [6] Prediction and classification of minerals using deep residual neural network
    Theerthagiri, Prasannavenkatesan
    Ruby, A. Usha
    George Chellin Chandran, J.
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (04) : 1539 - 1551
  • [7] Segmentation-Free Cell Phenotype Classification using Deep Residual Neural Networks
    Lao, Qicheng
    Sun, Haoran
    Fevens, Thomas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 72 - 77
  • [8] Knowledge Embedding Networks Based on Deep Learning for Automatic Modulation Classification in Cognitive Radio
    Zhang, Duona
    Lu, Yuanyao
    Ding, Wenrui
    Li, Yundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (12) : 7814 - 7825
  • [9] Solar Event Classification Using Deep Convolutional Neural Networks
    Kucuk, Ahmet
    Banda, Juan M.
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 118 - 130
  • [10] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262