On the Age of Eukaryotes: Evaluating Evidence from Fossils and Molecular Clocks

被引:154
作者
Eme, Laura [1 ]
Sharpe, Susan C. [1 ]
Brown, Matthew W. [1 ]
Roger, Andrew J. [1 ]
机构
[1] Dalhousie Univ, Ctr Comparat Genom & Evolutionary Bioinformat, Dept Biochem & Mol Biol, Halifax, NS B3H 4R2, Canada
来源
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY | 2014年 / 6卷 / 08期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
VASE-SHAPED MICROFOSSILS; DIVERGENCE TIMES; CALIBRATION UNCERTAINTY; BAYESIAN-ESTIMATION; EARLY EVOLUTION; CHUAR GROUP; ORIGIN; TREE; PHYLOGENY; MODEL;
D O I
10.1101/cshperspect.a016139
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely.
引用
收藏
页数:16
相关论文
共 123 条
[1]   Birth-death prior on phylogeny and speed dating [J].
Akerborg, Orjan ;
Sennblad, Bengt ;
Lagergren, Jens .
BMC EVOLUTIONARY BIOLOGY, 2008, 8 (1)
[2]   Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa [J].
Aris-Brosou, S ;
Yang, ZH .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (12) :1947-1954
[3]   Root of the eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data [J].
Arisue, N ;
Hasegawa, M ;
Hashimoto, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (03) :409-420
[4]   Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics [J].
Baele, Guy ;
Li, Wai Lok Sibon ;
Drummond, Alexei J. ;
Suchard, Marc A. ;
Lemey, Philippe .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (02) :239-243
[5]   A kingdom-level phylogeny of eukaryotes based on combined protein data [J].
Baldauf, SL ;
Roger, AJ ;
Wenk-Siefert, I ;
Doolittle, WF .
SCIENCE, 2000, 290 (5493) :972-977
[6]   The analysis of 100 genes supports the grouping of three highly divergent amoebae:: Dictyostelium, Entamoeba, and Mastigamoeba [J].
Bapteste, E ;
Brinkmann, H ;
Lee, JA ;
Moore, DV ;
Sensen, CW ;
Gordon, P ;
Duruflé, L ;
Gaasterland, T ;
Lopez, P ;
Müller, M ;
Philippe, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1414-1419
[7]   A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record [J].
Berney, Cedric ;
Pawlowski, Jan .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1596) :1867-1872
[8]   Molecular phylogeny and divergence times of deuterostome animals [J].
Blair, JE ;
Hedges, SB .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (11) :2275-2284
[9]   A site- and time-heterogeneous model of amino acid replacement [J].
Blanquart, Samuel ;
Lartillot, Nicolas .
MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (05) :842-858
[10]   A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution [J].
Blanquart, Samuel ;
Lartillot, Nicolas .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (11) :2058-2071