Feature Selection Considering Multiple Correlations Based on Soft Fuzzy Dominance Rough Sets for Monotonic Classification

被引:19
作者
Sang, Binbin [1 ,2 ]
Chen, Hongmei [1 ,2 ]
Yang, Lei [3 ]
Wan, Jihong [1 ,2 ]
Li, Tianrui [1 ,2 ]
Xu, Weihua [4 ]
机构
[1] Southwest Jiaotong Univ, Inst Artificial Intelligence, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[2] Southwest Jiaotong Univ, Natl Engn Lab Integrated Transportat Big Data Appl, Chengdu 611756, Peoples R China
[3] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Peoples R China
[4] Southwest Univ, Sch Artificial Intelligence, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; entropy-based uncertainty metrics; feature selection; monotonic classification; soft fuzzy dominance rough sets (SRDS); ATTRIBUTE REDUCTION; PREFERENCE-RELATION; APPROXIMATION; ENTROPY; NOISE;
D O I
10.1109/TFUZZ.2022.3169625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monotonic classification is a common task in the field of multicriteria decision-making, in which features and decision obey a monotonic constraint. The dominance-based rough set theory is an important mathematical tool for knowledge acquisition in monotonic classification tasks (MCTs). However, existing dominance-based rough set models are very sensitive to noise information, and only a misclassified sample will lead to large errors in acquiring knowledge. This unstable phenomenon does not meet the requirements of practical applications. On the other hand, feature selection is supposedly an effective dimensionality reduction approach for classification tasks. In the real world, feature combinations with multiple correlations can often provide important classification information, where the multiple correlations include redundancy, complementarity, and interaction between features. To the best of our knowledge, most of the existing feature selection methods for MCTs only consider the relevance between features and decision, while ignoring the multiple correlations. To overcome these two drawbacks, in this article, we propose a robust fuzzy dominance rough set model, and develop a feature selection method that considers multiple correlations based on the robust model for MCTs. First, a soft fuzzy dominance rough set (SFDRS) with robustness is proposed. Second, a feature evaluation index considering multiple correlations is presented. Finally, a feature selection algorithm based on SFDRS is designed to select an optimal feature subset. Extensive experiments are conducted on 12 public datasets, and the results show that the SFDRS model has good robustness and the proposed feature selection algorithm has excellent classification performance.
引用
收藏
页码:5181 / 5195
页数:15
相关论文
共 50 条
  • [1] Self-adaptive weighted interaction feature selection based on robust fuzzy dominance rough sets for monotonic classification
    Sang, Binbin
    Chen, Hongmei
    Wan, Jihong
    Yang, Lei
    Li, Tianrui
    Xu, Weihua
    Luo, Chuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [2] Feature Selection and Classification Based on Directed Fuzzy Rough Sets
    Wang, Changyue
    Wang, Changzhong
    An, Shuang
    Ding, Weiping
    Qian, Yuhua
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 699 - 711
  • [3] Discernibility matrix-based feature selection approaches with fuzzy dominance-based neighborhood rough sets
    Chen, Jiayue
    Zhu, Ping
    FUZZY SETS AND SYSTEMS, 2025, 513
  • [4] Feature Selection Based on Weighted Fuzzy Rough Sets
    Wang, Changzhong
    Wang, Changyue
    Qian, Yuhua
    Leng, Qiangkui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (07) : 4027 - 4037
  • [5] Soft fuzzy rough sets for robust feature evaluation and selection
    Hu, Qinghua
    An, Shuang
    Yu, Daren
    INFORMATION SCIENCES, 2010, 180 (22) : 4384 - 4400
  • [6] Feature selection considering synergy between features based on soft neighborhood rough sets
    Chen, Lubin
    Chen, Jinkun
    Lin, Yaojin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 150
  • [7] Incremental Feature Selection Using a Conditional Entropy Based on Fuzzy Dominance Neighborhood Rough Sets
    Sang, Binbin
    Chen, Hongmei
    Yang, Lei
    Li, Tianrui
    Xu, Weihua
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1683 - 1697
  • [8] Incremental feature selection based on fuzzy rough sets
    Ni, Peng
    Zhao, Suyun
    Wang, Xizhao
    Chen, Hong
    Li, Cuiping
    Tsang, Eric C. C.
    INFORMATION SCIENCES, 2020, 536 : 185 - 204
  • [9] A Fitting Model for Feature Selection With Fuzzy Rough Sets
    Wang, Changzhong
    Qi, Yali
    Shao, Mingwen
    Hu, Qinghua
    Chen, Degang
    Qian, Yuhua
    Lin, Yaojin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (04) : 741 - 753
  • [10] Feature subset selection based on fuzzy neighborhood rough sets
    Wang, Changzhong
    Shao, Mingwen
    He, Qiang
    Qian, Yuhua
    Qi, Yali
    KNOWLEDGE-BASED SYSTEMS, 2016, 111 : 173 - 179