Tensor Products and Correlation Estimates with Applications to Nonlinear Schrodinger Equations

被引:60
作者
Colliander, J. [1 ]
Grillakis, M. [3 ]
Tzirakis, N. [2 ]
机构
[1] Univ Toronto, Dept Math, Bahen Ctr 6110, Toronto, ON M5S 3G3, Canada
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
GLOBAL WELL-POSEDNESS; ROUGH SOLUTIONS; SCATTERING; EXISTENCE; DIMENSIONS; GORDON; DECAY; KLEIN; R-3;
D O I
10.1002/cpa.20278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove new interaction Morawetz-type (correlation) estimates in one and two dimensions. In dimension 2 the estimate corresponds to the nonlinear diagonal analogue of Bourgain's bilinear refinement of Strichartz. For the two-dimensional case we provide a proof in two different ways. First, we follow the original approach of Lin and Strauss but applied to tensor products of solutions. We then demonstrate the proof using commutator vector operators acting on the conservation laws of the equation. This method can be generalized to obtain correlation estimates in all dimensions. In one dimension we use the Gauss-Weierstrass summability method acting on the conservation laws. We then apply the two-dimensional estimate to nonlinear Schrodinger equations and derive a direct proof of Nakanishi's H-1 scattering result for every L-2-supercritical non-linearity. We also prove scattering below the energy space for a certain class of L-2-supercritical equations. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:920 / 968
页数:49
相关论文
共 26 条
[1]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[2]  
Bourgain J., 1999, AM MATH SOC C PUBLIC, V46, DOI DOI 10.1090/COLL/046
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
Coifman R., 1978, Ann. Inst. Fourier (Grenoble), V28, P177
[6]  
Coifman R. R., 1978, ASTERISQUE SOC MATH, V57
[7]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014
[8]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[9]  
COLLIANDER J, 2007, OBERWOLFACH REPORT, P2657
[10]  
COLLIANDER J, INT MATH RES NOT IMR, V2007, pMM90