Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6

被引:11
作者
Lembarki, Fatima Ezzahra [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Periodic orbits; Yang-Mills; Averaging theory; DYNAMICS;
D O I
10.1007/s11071-014-1249-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We apply the averaging theory to study a generalized Yang-Mills Hamiltonian system in dimension with six parameters. We provide sufficient conditions on the six parameters of the system which guarantee the existence of continuous families of period orbits parameterized by the energy.
引用
收藏
页码:1807 / 1819
页数:13
相关论文
共 17 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] Almeida MA, 1998, BRAZ J PHYS, V28, P470, DOI 10.1590/S0103-97331998000400022
  • [3] EXISTENCE OF STABLE PERIODIC-ORBITS IN THE X2Y2 POTENTIAL - A SEMICLASSICAL APPROACH
    BISWAS, D
    AZAM, M
    LAWANDE, QV
    LAWANDE, SV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : L297 - L301
  • [4] CARANICOLAS N, 1984, ASTRON ASTROPHYS, V141, P383
  • [5] Non-convergence of formal integrals of motion
    Contopoulos, G
    Efthymiopoulos, C
    Giorgilli, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (32): : 8639 - 8660
  • [6] THE STRUCTURE OF CHAOS IN A POTENTIAL WITHOUT ESCAPES
    CONTOPOULOS, G
    PAPADAKI, H
    POLYMILIS, C
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (02) : 249 - 271
  • [7] Destruction of islands of stability
    Contopoulos, G
    Harsoula, M
    Voglis, N
    Dvorak, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28): : 5213 - 5232
  • [8] THE LISSAJOUS TRANSFORMATION
    Deprit, Andre
    Elipe, Antonio
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 51 (03) : 227 - 250
  • [9] COMMENT ON A PAPER BY KASPERCZUK,S., CELEST-MECH 58 - 387-391 (1994)
    ELIPE, A
    HIETARINTA, J
    TOMPAIDIS, S
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 62 (02) : 191 - 192
  • [10] On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4
    Falconi, M.
    Lacomba, E. A.
    Vidal, C.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (02): : 301 - 333