Ω-deformation and quantization

被引:34
|
作者
Yagi, Junya [1 ,2 ]
机构
[1] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34149 Trieste, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 08期
关键词
Supersymmetric gauge theory; Integrable Field Theories; BRANES;
D O I
10.1007/JHEP08(2014)112
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We formulate a deformation of Rozansky-Witten theory analogous to the Omega-deformation. It is applicable when the target space X is hyperkahler and the spacetime is of the form R x Sigma, with Sigma being a Riemann surface. In the case that Sigma is a disk, the Omega-deformed Rozansky-Witten theory quantizes a symplectic submanifold of X, thereby providing a new perspective on quantization. As applications, we elucidate two phenomena in four-dimensional gauge theory from this point of view. One is a correspondence between the Omega-deformation and quantization of integrable systems. The other concerns supersymmetric loop operators and quantization of the algebra of holomorphic functions on a hyperkahler manifold.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] DEFORMATION QUANTIZATION
    WEINSTEIN, A
    ASTERISQUE, 1995, (227) : 389 - 409
  • [2] Quantization is deformation
    Sternheimer, D
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 331 - 352
  • [3] Ω-deformation and quantization
    Junya Yagi
    Journal of High Energy Physics, 2014
  • [4] NEW VIEW ON QUANTIZATION - QUANTIZATION AS A DEFORMATION
    NIEDERLE, J
    TOLAR, J
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1978, 28 (03): : 258 - 263
  • [5] QUANTIZATION AS DEFORMATION THEORY
    BLOORE, FJ
    ASSIMAKOPOULOS, M
    GHOBRIAL, IR
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) : 1034 - 1038
  • [6] Deformation quantization and reduction
    Cattaneo, Alberto S.
    POISSON GEOMETRY IN MATHEMATICS AND PHYSICS, 2008, 450 : 79 - 101
  • [7] Deformation quantization with traces
    Felder, G
    Shoikhet, B
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (01) : 75 - 86
  • [8] Logarithms and deformation quantization
    Alekseev, Anton
    Rossi, Carlo A.
    Torossian, Charles
    Willwacher, Thomas
    INVENTIONES MATHEMATICAE, 2016, 206 (01) : 1 - 28
  • [9] QUANTIZATION AS MAPPING AND AS DEFORMATION
    NIEDERLE, J
    TOLAR, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1979, 29 (12) : 1358 - 1368
  • [10] Quantization: Deformation and/or functor?
    Sternheimer, D
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 74 (03) : 293 - 309