Adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least 10

被引:1
作者
Chang, Yulin [1 ]
Ouyang, Qiancheng [1 ]
Wang, Guanghui [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Adjacent vertex distinguishing total coloring; Planar graph; Combinatorial Nullstellensatz; Discharging; DISTINGUISHING TOTAL COLORINGS;
D O I
10.1007/s10878-018-00375-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A (proper) total-k-coloring phi:V(G)E(G){1,2,...,k} is called adjacent vertex distinguishing if C phi(u)C phi(v) for each edge uvE(G), where C phi(u) is the set of the color of u and the colors of all edges incident with u. We use a(G) to denote the smallest value k in such a coloring of G. Zhang et al. first introduced this coloring and conjectured that a(G)(G)+3 for any simple graph G. For the list version of this coloring, it is known that cha(G)(G)+3 for any planar graph with (G)11, where cha(G) is the adjacent vertex distinguishing total choosability. In this paper, we show that if G is a planar graph with (G)10, then cha(G)(G)+3.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 28 条
[1]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[2]  
Bondy J. A., 1976, Graph Theory, V290
[4]   The adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least eleven [J].
Cheng, Xiaohan ;
Wu, Jianliang .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) :1-13
[5]  
Cheng XH, 2017, J COMB OPTIM, V34, P383, DOI 10.1007/s10878-016-9995-x
[6]   The adjacent vertex distinguishing total chromatic number [J].
Coker, Tom ;
Johannson, Karen .
DISCRETE MATHEMATICS, 2012, 312 (17) :2741-2750
[7]   Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz [J].
Ding LaiHao ;
Wang GuangHui ;
Yan GuiYing .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) :1875-1882
[8]   Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree [J].
Dong, Ai Jun ;
Wang, Guang Hui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) :703-709
[9]  
[黄丹君 Huang DanJun], 2012, [中国科学. 数学, Scientia Sinica Mathematica], V42, P151
[10]   The total chromatic number of any multigraph with maximum degree five is at most seven [J].
Kostochka, AV .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :199-214