Metabolite identification through multiple kernel learning on fragmentation trees

被引:85
作者
Shen, Huibin [1 ,2 ]
Duhrkop, Kai [3 ]
Bocker, Sebastian [3 ]
Rousu, Juho [1 ,2 ]
机构
[1] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[2] Helsinki Inst Informat Technol, Espoo, Finland
[3] Univ Jena, Chair Bioinformat, Jena, Germany
基金
芬兰科学院;
关键词
COMPUTATIONAL MASS-SPECTROMETRY; PATTERNS; METLIN;
D O I
10.1093/bioinformatics/btu275
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Results: Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 33 条
  • [1] Allen F., 2013, 13120264 ARXIV
  • [2] Towards de novo identification of metabolites by analyzing tandem mass spectra
    Boecker, Sebastian
    Rasche, Florian
    [J]. BIOINFORMATICS, 2008, 24 (16) : I49 - I55
  • [3] SIRIUS: decomposing isotope patterns for metabolite identification
    Boecker, Sebastian
    Letzel, Matthias C.
    Liptak, Zsuzsanna
    Pervukhin, Anton
    [J]. BIOINFORMATICS, 2009, 25 (02) : 218 - 224
  • [4] Collins M, 2002, ADV NEUR IN, V14, P625
  • [5] Cortes C, 2012, J MACH LEARN RES, V13, P795
  • [6] Spectral similarity versus structural similarity: mass spectrometry
    Demuth, W
    Karlovits, M
    Varmuza, K
    [J]. ANALYTICA CHIMICA ACTA, 2004, 516 (1-2) : 75 - 85
  • [7] MetFusion: integration of compound identification strategies
    Gerlich, Michael
    Neumann, Steffen
    [J]. JOURNAL OF MASS SPECTROMETRY, 2013, 48 (03): : 291 - 298
  • [8] Gönen M, 2011, J MACH LEARN RES, V12, P2211
  • [9] Metabolite identification and molecular fingerprint prediction through machine learning
    Heinonen, Markus
    Shen, Huibin
    Zamboni, Nicola
    Rousu, Juho
    [J]. BIOINFORMATICS, 2012, 28 (18) : 2333 - 2341
  • [10] Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra
    Hill, Dennis W.
    Kertesz, Tzipporah M.
    Fontaine, Dan
    Friedman, Robert
    Grant, David F.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (14) : 5574 - 5582