Metabolite identification through multiple kernel learning on fragmentation trees

被引:88
作者
Shen, Huibin [1 ,2 ]
Duhrkop, Kai [3 ]
Bocker, Sebastian [3 ]
Rousu, Juho [1 ,2 ]
机构
[1] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[2] Helsinki Inst Informat Technol, Espoo, Finland
[3] Univ Jena, Chair Bioinformat, Jena, Germany
基金
芬兰科学院;
关键词
COMPUTATIONAL MASS-SPECTROMETRY; PATTERNS; METLIN;
D O I
10.1093/bioinformatics/btu275
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Results: Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 33 条
[1]  
Allen F., 2013, 13120264 ARXIV
[2]   Towards de novo identification of metabolites by analyzing tandem mass spectra [J].
Boecker, Sebastian ;
Rasche, Florian .
BIOINFORMATICS, 2008, 24 (16) :I49-I55
[3]   SIRIUS: decomposing isotope patterns for metabolite identification [J].
Boecker, Sebastian ;
Letzel, Matthias C. ;
Liptak, Zsuzsanna ;
Pervukhin, Anton .
BIOINFORMATICS, 2009, 25 (02) :218-224
[4]  
Collins M, 2002, ADV NEUR IN, V14, P625
[5]  
Cortes C, 2012, J MACH LEARN RES, V13, P795
[6]   Spectral similarity versus structural similarity: mass spectrometry [J].
Demuth, W ;
Karlovits, M ;
Varmuza, K .
ANALYTICA CHIMICA ACTA, 2004, 516 (1-2) :75-85
[7]   MetFusion: integration of compound identification strategies [J].
Gerlich, Michael ;
Neumann, Steffen .
JOURNAL OF MASS SPECTROMETRY, 2013, 48 (03) :291-298
[8]  
Gönen M, 2011, J MACH LEARN RES, V12, P2211
[9]   Metabolite identification and molecular fingerprint prediction through machine learning [J].
Heinonen, Markus ;
Shen, Huibin ;
Zamboni, Nicola ;
Rousu, Juho .
BIOINFORMATICS, 2012, 28 (18) :2333-2341
[10]   Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra [J].
Hill, Dennis W. ;
Kertesz, Tzipporah M. ;
Fontaine, Dan ;
Friedman, Robert ;
Grant, David F. .
ANALYTICAL CHEMISTRY, 2008, 80 (14) :5574-5582