Quantum Approximate Markov Chains are Thermal

被引:38
作者
Kato, Kohtaro [1 ,2 ]
Brandao, Fernando G. S. L. [2 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo, Japan
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
关键词
INFORMATION-THEORY;
D O I
10.1007/s00220-019-03485-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a short-range quantum Hamiltonian. Conversely, we also derive an upper bound on the (quantum) conditional mutual information of Gibbs states of 1D short-range quantum Hamiltonians. We show that the conditional mutual information between two regions A and C conditioned on the middle region B decays exponentially with the square root of the length of B. These two results constitute a variant of the Hammersley-Clifford theorem (which characterizes Markov networks, i.e. probability distributions which have vanishing conditional mutual information, as Gibbs states of classical short-range Hamiltonians) for 1D quantum systems. The result can be seen as a strengthening-for 1D systems-of the mutual information area law for thermal states. It directly implies an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth quantum circuit.
引用
收藏
页码:117 / 149
页数:33
相关论文
共 27 条
[1]   Continuity of quantum conditional information [J].
Alicki, R ;
Fannes, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :L55-L57
[2]  
[Anonymous], ARXIV160906994
[3]  
[Anonymous], 1971, MARKOV FIELD FINITE
[4]  
[Anonymous], 2017, ARXIV170302903
[5]   GIBBS STATES OF A ONE DIMENSIONAL QUANTUM LATTICE [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (02) :120-&
[6]  
Araki H., 1973, ANN SCI ECOLE NORM S, V6, P67
[7]  
Brandao F. G. S. L., 2016, ARXIV160907877
[8]   Exponential Decay of Correlations Implies Area Law [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :761-798
[9]  
Brown W, 2012, ARXIV12060755
[10]   Exact cost of redistributing multipartite quantum states [J].
Devetak, Igor ;
Yard, Jon .
PHYSICAL REVIEW LETTERS, 2008, 100 (23)