Grouped variable selection for generalized eigenvalue problems

被引:9
作者
Dan, Jonathan [1 ,2 ,4 ]
Geirnaert, Simon [1 ,3 ,4 ]
Bertrand, Alexander [1 ,4 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[2] Byteflies, Borsbeeksebrug 22, B-2600 Berchem, Belgium
[3] Katholieke Univ Leuven, Res Grp ExpORL, Dept Neurosci, Herestraat 49 Box 721, B-3000 Leuven, Belgium
[4] AI KU Leuven, Inst AI, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Convex optimization; Variable selection; Sensor selection; Generalized rayleigh quotient; Generalized eigenvalue decomposition; Group sparsity; CHANNEL SELECTION; SENSOR SELECTION; ARRAY; SPARSITY;
D O I
10.1016/j.sigpro.2022.108476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many problems require the selection of a subset of variables from a full set of optimization variables. The computational complexity of an exhaustive search over all possible subsets of variables is, however, pro-hibitively expensive, necessitating more efficient but potentially suboptimal search strategies. We focus on sparse variable selection for generalized Rayleigh quotient optimization and generalized eigenvalue problems. Such problems often arise in the signal processing field, e.g., in the design of optimal data-driven filters. We extend and generalize existing work on convex optimization-based variable selection using semidefinite relaxations toward group-sparse variable selection using the l(1,infinity)-norm. This group-sparsity allows, for instance, to perform sensor selection for spatio-temporal (instead of purely spatial) filters, and to select variables based on multiple generalized eigenvectors instead of only the dominant one. Furthermore, we extensively compare our method to state-of-the-art methods for sensor selection for spatio-temporal filter design in a simulated sensor network setting. The results show both the proposed algorithm and backward greedy selection method best approximate the exhaustive solution. However, the backward greedy selection has more specific failure cases, in particular for ill-conditioned covariance matrices. As such, the proposed algorithm is the most robust currently available method for group-sparse variable selection in generalized eigenvalue problems. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 36 条
[1]   A review of channel selection algorithms for EEG signal processing [J].
Alotaiby, Turky ;
Abd El-Samie, Fathi E. ;
Alshebeili, Saleh A. ;
Ahmad, Ishtiaq .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015,
[2]   Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1865-1873
[3]  
Bertrand A., 2011, P 18 IEEE S COMM VEH, P1
[4]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[5]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[6]   Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models [J].
Chepuri, Sundeep Prabhakar ;
Leus, Geert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (03) :684-698
[7]   Computationally-Efficient Algorithm for Real-Time Absence Seizure Detection in Wearable Electroencephalography [J].
Dan, Jonathan ;
Vandendriessche, Benjamin ;
Van Paesschen, Wim ;
Weckhuysen, Dorien ;
Bertrand, Alexander .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (11)
[8]  
Dash M., 1997, Intelligent Data Analysis, V1
[9]  
Galecki A, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-3900-4
[10]   On the Sparse Beamformer Design [J].
Gao, Mingjie ;
Yiu, Ka Fai Cedric ;
Nordholm, Sven .
SENSORS, 2018, 18 (10)