Optimization with Soft Dice Can Lead to a Volumetric Bias

被引:18
作者
Bertels, Jeroen [1 ]
Robben, David [1 ,2 ]
Vandermeulen, Dirk [1 ]
Suetens, Paul [1 ]
机构
[1] Katholieke Univ Leuven, Proc Speech & Images, ESAT, Leuven, Belgium
[2] Icometrix, Leuven, Belgium
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I | 2020年 / 11992卷
关键词
Segmentation; Cross-entropy; Soft Dice; Volume;
D O I
10.1007/978-3-030-46640-4_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation is a fundamental task in medical image analysis. The clinical interest is often to measure the volume of a structure. To evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using metrics such as the Dice score. Recent segmentation methods based on convolutional neural networks use a differentiable surrogate of the Dice score, such as soft Dice, explicitly as the loss function during the learning phase. Even though this approach leads to improved Dice scores, we find that, both theoretically and empirically on four medical tasks, it can introduce a volumetric bias for tasks with high inherent uncertainty. As such, this may limit the method's clinical applicability.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2018, Multimodal Brain Tumor Segmentation Challenge
[2]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]   Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice [J].
Bertels, Jeroen ;
Eelbode, Tom ;
Berman, Maxim ;
Vandermeulen, Dirk ;
Maes, Frederik ;
Bisschops, Raf ;
Blaschko, Matthew B. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :92-100
[5]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[6]   Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials [J].
Goyal, Mayank ;
Menon, Bijoy K. ;
van Zwam, Wim H. ;
Dippel, Diederik W. J. ;
Mitchell, Peter J. ;
Demchuk, Andrew M. ;
Davalos, Antoni ;
Majoie, Charles B. L. M. ;
van der Lugt, Aad ;
de Miquel, Maria A. ;
Donnan, Geoff Rey A. ;
Roos, Yvo B. W. E. M. ;
Bonafe, Alain ;
Jahan, Reza ;
Diener, Hans-Christoph ;
van den Berg, Lucie A. ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Pereira, Vitor M. ;
Rempel, Jeremy ;
Millan, Monica ;
Davis, Stephen M. ;
Roy, Daniel ;
Thornton, John ;
San Roman, Luis ;
Ribo, Marc ;
Beumer, Debbie ;
Stouch, Bruce ;
Brown, Scott ;
Campbell, Bruce C. V. ;
van Oostenbrugge, Robert J. ;
Saver, Jeff Rey L. ;
Hill, Michael D. ;
Jovin, Tudor G. .
LANCET, 2016, 387 (10029) :1723-1731
[7]  
Ischemic Stroke Lesion Segmentation (ISLES), 2017, CHALLENGE
[8]  
Ischemic Stroke Lesion Segmentation (ISLES), 2018, CHALLENGE
[9]   No New-Net [J].
Isensee, Fabian ;
Kickingereder, Philipp ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :234-244
[10]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78