On zero-divisor graphs of commutative rings without identity

被引:7
作者
Kalaimurugan, G. [1 ]
Vignesh, P. [1 ]
Chelvam, T. Tamizh [2 ]
机构
[1] Thiruvalluvar Univ, Dept Math, Vellore 632115, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, Tamil Nadu, India
关键词
Zero-divisor graph; commutative ring without identity; genus; PLANAR; GENUS;
D O I
10.1142/S0219498820502266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.
引用
收藏
页数:20
相关论文
共 24 条
[1]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[2]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[3]   THE ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING WITHOUT IDENTITY [J].
Anderson, David F. ;
Weber, Darrin .
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2018, 23 :176-202
[4]  
Anderson DD, 2000, SEMIGROUP FORUM, V60, P436
[5]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[6]  
[Anonymous], 2011, Commutative Algebra, Noetherian and Non-Noetherian Perspectives
[7]  
[Anonymous], 2000, INTRO GRAPH THEORY
[8]  
[Anonymous], 2007, A beginner's guide to graph theory
[9]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[10]   Zero-divisor graphs of polynomials and power series over commutative rings [J].
Axtell, M ;
Coykendall, J ;
Stickles, J .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (06) :2043-2050