This paper presents a new method for the numerical solution of nonlinear multiobjective optimization problems with an arbitrary partial ordering in the objective space induced by a closed pointed convex cone. This algorithm is based on the well-known scalarization approach by Pascoletti and Serafini and adaptively controls the scalarization parameters using new sensitivity results. The computed image points give a nearly equidistant approximation of the whole Pareto surface. The effectiveness of this new method is demonstrated with various test problems and an applied problem from medicine.