A Poisson boundary for topological semigroups

被引:1
作者
Prunaru, Bebe [1 ]
机构
[1] Acad Romana, Inst Math Simion Stoilow, Bucharest 01470, Romania
关键词
Poisson boundary; Topological semigroup; Harmonic function; RANDOM-WALKS;
D O I
10.1007/s00013-014-0631-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a non-probabilistic proof for the boundary integral representation of mu-harmonic functions on topological semigroups.
引用
收藏
页码:449 / 454
页数:6
相关论文
共 8 条
[1]  
AZENCOTT R., 1970, Lecture Notes in Math., V148
[2]   NONPROBABILISTIC COMPUTATION OF THE POISSON BOUNDARY FOR AN ETALEE MEASURE ON A SEMISIMPLE LIE GROUP [J].
DOKKEN, DP .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (03) :995-1001
[3]  
Furman A., 2002, HDB DYNAMICAL SYSTEM
[4]   A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS [J].
FURSTENBERG, H .
ANNALS OF MATHEMATICS, 1963, 77 (02) :335-&
[5]   RANDOM-WALKS ON DISCRETE-GROUPS - BOUNDARY AND ENTROPY [J].
KAIMANOVICH, VA ;
VERSHIK, AM .
ANNALS OF PROBABILITY, 1983, 11 (03) :457-490
[6]   A NON-PROBABILISTIC APPROACH TO POISSON SPACES [J].
PATERSON, ALT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1983, 93 :181-188
[7]   PROBABILITY-MEASURES ON GROUPS AND SOME RELATED IDEALS IN GROUP-ALGEBRAS [J].
WILLIS, GA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 92 (01) :202-263
[8]   AMENABLE ERGODIC GROUP ACTIONS AND AN APPLICATION TO POISSON BOUNDARIES OF RANDOM-WALKS [J].
ZIMMER, RJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 27 (03) :350-372