Copolymer at selective interfaces and pinning potentials: Weak coupling limits

被引:3
作者
Petrelis, Nicolas [1 ,2 ]
机构
[1] Eurandom, NL-5600 MB Eindhoven, Netherlands
[2] CNRS, UMR 6085, Lab Math Raphael Salem, F-76801 St Etienne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 01期
关键词
Polymers; Localization-delocalization transition; Pinning; Random walk; Weak coupling; LOCALIZATION TRANSITION; RANDOM-WALK; POLYMER; DISORDER;
D O I
10.1214/07-AIHP160
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a simple random walk of length N, denoted by (S(i))(i is an element of{1,...,N}), and we define (w(i))(i >= 1) a sequence of centered i.i.d. random variables. For K is an element of N we define ((gamma(-K)(i).....gamma(K)(i)))(i >= 1), an i.i.d sequence of random vectors. We set beta is an element of R, lambda >= 0 and h >= 0. and transform the measure on the set of random walk trajectories with the Hamiltonian lambda Sigma(N)(i=1)(w(i) +h) sign (S(i)) + beta Sigma(K)(j=-K)Sigma(N)(i=1) gamma(j)(i) (1){S(i=j)}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface between oil and water. In the present article we prove the convergence in the limit of weak coupling (when lambda, h and beta tend to 0) of this discrete model towards its Continuous counterpart. To that aim we further develop a technique of coarse graining introduced by Bolthausen and den Hollander in Ann. Probab. 25 (1997) 1334-1366. Our result shows, in particular, that the randomness of the pinning around the interface vanishes as the coupling becomes weaker.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 23 条
[1]   Free energy and some sample path properties of a random walk with random potential [J].
Albeverio, S ;
Zhou, XY .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (3-4) :573-622
[2]   The effect of disorder on polymer depinning transitions [J].
Alexander, Kenneth S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :117-146
[3]   Pinning of polymers and interfaces by random potentials [J].
Alexander, Kenneth S. ;
Sidoravicius, Vladas .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) :636-669
[4]  
Biskup M, 1999, ANN APPL PROBAB, V9, P668
[5]   On the localization transition of random copolymers near selective interfaces [J].
Bodineau, T ;
Giacomin, G .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (5-6) :801-818
[6]  
Bolthausen E, 1997, ANN PROBAB, V25, P1334
[7]   A numerical approach to copolymers at selective interfaces [J].
Caravenna, F ;
Giacomin, G ;
Gubinelli, M .
JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (04) :799-832
[8]   EFFECT OF DISORDER ON 2-DIMENSIONAL WETTING [J].
DERRIDA, B ;
HAKIM, V ;
VANNIMENUS, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1189-1213
[9]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications
[10]   Estimates on path delocalization for copolymers at selective interfaces [J].
Giacomin, G ;
Toninelli, FL .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) :464-482