Unstructured grid-based discontinuous Galerkin method for broadband electromagnetic simulations

被引:19
作者
Kabakian, AV [1 ]
Shankar, V [1 ]
Hall, WF [1 ]
机构
[1] HyPerComp Inc, Westlake Village, CA 91362 USA
关键词
discontinuous Galerkin; unstructured grid; broadband; time-domain electromagnetics; Maxwell's equations;
D O I
10.1023/B:JOMP.0000025932.17082.18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parallel, unstructured, high-order discontinuous Galerkin method is developed for the time-dependent Maxwell's equations, using simple monomial polynomials for spatial discretization and a fourth-order Runge-Kutta scheme for time marching. Scattering results for a number of validation cases are computed employing polynomials of up to third order. Accurate solutions are obtained on coarse meshes and grid convergence is achieved, demonstrating the capabilities of the scheme for time-domain electromagnetic wave scattering simulations.
引用
收藏
页码:405 / 431
页数:27
相关论文
共 35 条
[1]   Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J].
Berenger, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :363-379
[2]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[3]  
BURDEN RL, 1981, NUMERICAL ANAL, P225
[4]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[5]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[6]  
COCKBURN B, 1991, MATH MODEL NUMER ANA, V52, P337
[7]  
CRISPIN JW, 1959, 25911M U MICH
[8]   Nonreflecting boundary conditions for Maxwell's equations [J].
Grote, MJ ;
Keller, JB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (02) :327-342
[9]  
HESTHAVEN JS, 2001, 20016 ICASE NASA LAN
[10]  
JOHNSON C, 1986, MATH COMPUT, V46, P1, DOI 10.1090/S0025-5718-1986-0815828-4