New Horizons for Conventional Lithium Ion Battery Technology

被引:237
作者
Erickson, Evan M. [1 ]
Ghanty, Chandan [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
TRANSMISSION ELECTRON-MICROSCOPY; ALKYL CARBONATE SOLUTIONS; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; ELEVATED-TEMPERATURE; COMPOSITE ELECTRODES; POSITIVE ELECTRODES; SURFACE-CHEMISTRY; ENERGY-STORAGE;
D O I
10.1021/jz501387m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide similar to 100-150 km of driving distance per charge, similar to 5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.
引用
收藏
页码:3313 / 3324
页数:12
相关论文
共 90 条
[1]   Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating [J].
Amalraj, Francis ;
Talianker, Michael ;
Markovsky, Boris ;
Burlaka, Luba ;
Leifer, Nicole ;
Goobes, Gil ;
Erickson, Evan M. ;
Haik, Ortal ;
Grinblat, Judith ;
Zinigrad, Ella ;
Aurbach, Doron ;
Lampert, Jordan K. ;
Shin, Ji-Yong ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2220-A2233
[2]   Integrated Materials xLi2MnO3•(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) Synthesized [J].
Amalraj, Francis ;
Kovacheva, Daniela ;
Talianker, Michael ;
Zeiri, Leila ;
Grinblat, Judith ;
Leifer, Nicole ;
Goobes, Gil ;
Markovsky, Boris ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1121-A1130
[3]   The use of in situ techniques in R&D of Li and Mg rechargeable batteries [J].
Amalraj, S. Francis ;
Aurbach, Doron .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (05) :877-890
[4]  
[Anonymous], 2002, ADV LITHIUM ION BATT
[5]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[6]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[7]  
Balbuena P.B., 2004, Lithium-Ion Batteries: Solid-Electrolyte Interphase
[8]   A neutron diffraction cell for studying lithium-insertion processes in electrode materials [J].
Bergstrom, O ;
Andersson, AM ;
Edstrom, K ;
Gustafsson, T .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1998, 31 :823-825
[9]   LiMn0.8Fe0.2PO4/Li4Ti5O12, a Possible Li-Ion Battery System for Load-Leveling Application [J].
Borgel, Valentina ;
Gershinsky, Gregory ;
Hu, Terry ;
Theivanayagam, Murali G. ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A650-A657
[10]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192