On Semantic Image Segmentation Using Deep Convolutional Neural Network with Shortcuts and Easy Class Extension

被引:0
作者
Wang, Chunlai [1 ]
Mauch, Lukas [1 ]
Guo, Ze [1 ]
Yang, Bin [1 ]
机构
[1] Univ Stuttgart, Inst Signal Proc & Syst Theory, Stuttgart, Germany
来源
2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA) | 2016年
关键词
Semantic image segmentation; Deep convolutional neural network; Class extension; Context;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we examine the use of deep convolutional neural networks for semantic image segmentation, which separates an input image into multiple regions corresponding to predefined object classes. We use an encoder-decoder structure and aim to improve it in convergence speed and segmentation accuracy by adding shortcuts between network layers. Besides, we investigate how to extend an already trained model to other new object classes. We propose a new strategy for class extension with only little training data and class labels. In the experiments we use two street scene datasets to demonstrate the strength of shortcuts, to study the contextual information encoded in the learned model and to show the effectiveness of our class extension method.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Image Super-Resolution With Deep Convolutional Neural Network [J].
Ji, Xiancai ;
Lu, Yao ;
Guo, Li .
2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, :626-630
[32]   Rosette plant segmentation with leaf count using orthogonal transform and deep convolutional neural network [J].
J. Praveen Kumar ;
S. Domnic .
Machine Vision and Applications, 2020, 31
[33]   Rosette plant segmentation with leaf count using orthogonal transform and deep convolutional neural network [J].
Praveen Kumar, J. ;
Dominic, S. .
MACHINE VISION AND APPLICATIONS, 2020, 31 (01)
[34]   Sketch Based Image Retrieval Based on Multi-layer Semantic Feature and Deep Convolutional Neural Network [J].
Liu Y. ;
Yu D. ;
Pang Y. ;
Li Z. ;
Li H. .
Li, Zongmin (lizongmin@upc.edu.cn), 2018, Institute of Computing Technology (30) :651-657
[35]   Fully Automated Left Atrial Segmentation from MR Image Sequences Using Deep Convolutional Neural Network and Unscented Kalman Filter [J].
Zhang, Xiaoran ;
Martin, David Glynn ;
Noga, Michelle ;
Punithakumar, Kumaradevan .
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, :2316-2323
[36]   Detection of Potholes Using a Deep Convolutional Neural Network [J].
Suong, Lim Kuoy ;
Jangwoo, Kwon .
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) :1244-1257
[37]   Cross-Attentional Bracket-shaped Convolutional Network for semantic image segmentation [J].
Hua, Cam-Hao ;
Thien Huynh-The ;
Bae, Sung-Ho ;
Lee, Sungyoung .
INFORMATION SCIENCES, 2020, 539 :277-294
[38]   Ordinal Image Segmentation using Deep Neural Networks [J].
Fernandes, Kelwin ;
Cardoso, Jaime S. .
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
[39]   Semantic Image Segmentation Based Cable Vibration Frequency Visual Monitoring Using Modified Convolutional Neural Network with Pixel-wise Weighting Strategy [J].
Yang, Han ;
Xu, Hong-Cheng ;
Jiao, Shuang-Jian ;
Yin, Feng-De .
REMOTE SENSING, 2021, 13 (08)
[40]   DCNet: diffusion convolutional networks for semantic image segmentation [J].
Yang, Lan ;
Jiang, Zhixiong ;
Zhou, Hongbo ;
Guo, Jun .
INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (03) :300-311