A Logarithmically Improved Regularity Criterion for the 3D Boussinesq Equations Via the Pressure

被引:14
作者
Zhang, Zujin [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq equations; Regularity criterion; Besov spaces; NAVIER-STOKES EQUATIONS; BLOW-UP CRITERIA; WEAK SOLUTIONS;
D O I
10.1007/s10440-013-9855-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the three-dimensional Boussinesq equations, and obtain a logarithmically improved regularity criterion in terms of pressure.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1963, NONLINEAR PROBLEMS
[2]  
[Anonymous], 2002, Topics in Mathematical Fluid Mechanics
[3]   A note on regularity criterion for the 3D Boussinesq system with partial viscosity [J].
Fan, Jishan ;
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :802-805
[4]   Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the pressure in the class L2(0, T; <(B)over dot>∞,∞-1(R3)) [J].
He, Xiaowei ;
Gala, Sadek .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3602-3607
[5]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[6]   Remarks on the blow-up criterion for the 3-D Bousslnesq equations [J].
Ishimura, N ;
Morimoto, H .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (09) :1323-1332
[7]  
Lemarie-Rieusset P.-G., 2002, Research Notes in Mathematics, V431
[8]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[9]  
Meyer Y., 1996, SEMINAIRE E QUATIONS
[10]   Blow-up criteria for 3D Boussinesq equations in the multiplier space [J].
Qiu, Hua ;
Du, Yi ;
Yao, Zheng'an .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1820-1824