On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables

被引:6
作者
Shen, Aiting [1 ]
Zhang, Ying [1 ]
Volodin, Andrei [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
中国国家自然科学基金;
关键词
INDEPENDENT RANDOM-VARIABLES; DEPENDENT RANDOM-VARIABLES; LARGE NUMBERS; STRONG LAW; WEIGHTED SUMS; EXPONENTIAL INEQUALITIES; LIMIT-THEOREMS; SEQUENCES; MOMENT;
D O I
10.1155/2014/949608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {a(n,),n >= 1} be a sequence of positive constants with a(n/)n up arrow and let {X, X-n,X- n >= 1} be a sequence of pairwise negatively quadrant dependent random variables. The complete convergence for pairwise negatively quadrant dependent random variables is studied under mild condition. In addition, the strong laws of large numbers for identically distributed pairwise negatively quadrant dependent random variables are established, which are equivalent to the mild condition Sigma(infinity)(n=1) P(vertical bar X vertical bar > a(n)) < infinity. Our results obtained in the paper generalize the corresponding ones for pairwise independent and identically distributed random variables..
引用
收藏
页数:7
相关论文
共 32 条
  • [1] [Anonymous], 2005, Probability: A Graduate Course
  • [2] On complete convergence and the strong law of large numbers for pairwise independent random variables
    Bai, P.
    Chen, P. -Y.
    Sung, S. H.
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) : 502 - 518
  • [3] [陈平炎 Chen Pingyan], 2005, [数学物理学报. A辑, Acta Mathematica Scientia], V25, P386
  • [4] Chung K., 1974, A course in probability theory
  • [5] AN ELEMENTARY PROOF OF THE STRONG LAW OF LARGE NUMBERS
    ETEMADI, N
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (01): : 119 - 122
  • [6] Gan SX, 2008, ACTA MATH SCI, V28, P269
  • [7] A note on the complete convergence for sequences of pairwise NQD random variables
    Huang, Haiwu
    Wang, Dingcheng
    Wu, Qunying
    Zhang, Qingxia
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [8] NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS
    JOAGDEV, K
    PROSCHAN, F
    [J]. ANNALS OF STATISTICS, 1983, 11 (01) : 286 - 295
  • [9] A strong law of large numbers for pairwise independent identically distributed random variables with infinite means
    Kruglov, Victor M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (07) : 890 - 895
  • [10] SOME CONCEPTS OF DEPENDENCE
    LEHMANN, EL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05): : 1137 - &