LiNi0.5Mn1.5O4 nanoparticles: Synthesis with synergistic effect of polyvinylpyrrolidone and ethylene glycol and performance as cathode of lithium ion battery

被引:90
|
作者
Lin, H. B. [1 ]
Zhang, Y. M. [1 ]
Hu, J. N. [1 ]
Wang, Y. T. [1 ]
Xing, L. D. [1 ,2 ,3 ]
Xu, M. Q. [1 ,2 ,3 ]
Li, X. P. [1 ,2 ,3 ]
Li, W. S. [1 ,2 ,3 ]
机构
[1] S China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Key Lab Electrochem Technol Energy Storage & Powe, Guangdong Higher Educ Inst, Guangzhou 510006, Guangdong, Peoples R China
[3] S China Normal Univ, Minist Educ, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
LiNi0.5Mn1.5O4; Jahn-Teller distortion; Nanoparticle; Lithium battery; POLYMER-ASSISTED SYNTHESIS; ELECTROCHEMICAL PROPERTIES; RATE CAPABILITY; SPINEL LINI0.5MN1.5O4; ELEVATED-TEMPERATURE; POSITIVE-ELECTRODE; ENHANCED RATE; CO; LIMN1.5NI0.5O4; NANO;
D O I
10.1016/j.jpowsour.2014.01.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.5Mn1.5O4 was synthesized by sol-gel using polyvinylpyrrolidone (PVP) as dispersant and ethylene glycol (EG) as size-controlled additive. Crystal structure, particle morphology and electrochemical performance of the resulting product (PVP-LNMO) as cathode of lithium ion battery were investigated with XRD, SEM, CV, EIS, and charge/discharge test, with a comparison of LiNi0.5Mn1.5O4 (LNMO) synthesized under the same conditions but without using PVP and EG. It is found that PVP-LNMO is composed of dispersed LiNi0.5Mn1.5O4 nanoparticles with uniform size, and exhibits far better rate capability and cyclic stability than LNMO. The particles of the latter are in micro size due to the aggregation of smaller primary particles. PVP-LNMO delivers a reversible discharge capacity of 96 mAh g(-1) at 20C rate with a capacity retention of 93% at 5C rate after 500 cycles, while only 40 mAh g(-1) and 53% for LNMO, respectively. The nanoparticles provide shorter distance for electron and lithium ion transport and larger surface area for electron exchange on the electrode/electrolyte interface, resulting in the far better rate capability of PVP-LNMO than LNMO, while the room among nanoparticles in PVP-LNMO releases the stress of Jahn-Teller distortion that causes destruction of LNMO microparticles, resulting in the excellent cyclic stability. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [41] Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries
    Zhang, Li
    Lv, Xiaoyan
    Wen, Yanxuan
    Wang, Fan
    Su, Haifeng
    Journal of Alloys and Compounds, 2009, 480 (02): : 802 - 805
  • [42] Synthesis of high voltage LiNi0.5Mn1.5O4 as cathode of lithium ion batteries and its electrochemical performances
    Yang, Zeheng
    Yao, Hongxu
    Xia, Jianfeng
    Zhang, Weixin
    Pei, Bo
    Mei, Zhousheng
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2013, 41 (01): : 1 - 6
  • [43] Electrochemical performance and electronic properties of shell LiNi0.5Mn1.5O4 hollow spheres for lithium ion battery
    Cui, Yongli
    Wang, Jiali
    Wang, Mingzhen
    Zhuang, Quanchao
    FUNCTIONAL MATERIALS LETTERS, 2016, 9 (02)
  • [44] Synthesis and Performance of F-doped LiNi0.5Mn1.5O4 Cathode Material
    Li Jun
    Li Qingbiao
    Li Shaofang
    Zhu Jianxin
    Liu Jianjun
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (02) : 439 - 444
  • [45] LiNi0.5Mn1.5O4 Cathodes for Lithium Ion Batteries: A Review
    Wang, Hailong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (09) : 6883 - 6890
  • [46] Synthesis of LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures for lithium-ion battery
    Li, Shiyou
    Geng, Shan
    Zhao, Jiachen
    Cui, Xiaoling
    IONICS, 2018, 24 (03) : 681 - 688
  • [47] Comparison of LiNi0.5Mn1.5O4 and LiMn2O4 for lithium-ion battery
    Liang, Xinghua
    Shi, Lin
    Liu, Yusi
    Liu, Tianjiao
    Ye, Chaochao
    Zeng, Shuaibo
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 956 - +
  • [48] Synthesis of LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures for lithium-ion battery
    Shiyou Li
    Shan Geng
    Jiachen Zhao
    Xiaoling Cui
    Ionics, 2018, 24 : 681 - 688
  • [49] Manganese-Based Lithium-Ion Battery: Mn3O4 Anode Versus LiNi0.5Mn1.5O4 Cathode
    Mao, Wenfeng
    Yue, Wei
    Feng Pei
    Zhao, Xiaochen
    Huang, Xiangdong
    Ai, Guo
    AUTOMOTIVE INNOVATION, 2020, 3 (02) : 123 - 132
  • [50] Manganese-Based Lithium-Ion Battery: Mn3O4 Anode Versus LiNi0.5Mn1.5O4 Cathode
    Wenfeng Mao
    Wei Yue
    Feng Pei
    Xiaochen Zhao
    Xiangdong Huang
    Guo Ai
    Automotive Innovation, 2020, 3 : 123 - 132