About fractional quantization and fractional variational principles

被引:64
作者
Baleanu, Dumitru [1 ,2 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
Fractional variational principles; Fractional systems; Infinite-dimensional systems; Hamiltonian systems; FORMULATION;
D O I
10.1016/j.cnsns.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2520 / 2523
页数:4
相关论文
共 17 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]   About fractional supersymmetric quantum mechanics [J].
Baleanu, D ;
Muslih, SI .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) :1063-1066
[4]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[5]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[6]   On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Rabei, Eqab M. .
NONLINEAR DYNAMICS, 2008, 53 (1-2) :67-74
[7]   Fractional Hamiltonian analysis of higher order derivatives systems [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Tas, Kenan .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[8]   Hamiltonian formalism for space-time noncommutative theories [J].
Gomis, J ;
Kamimura, K ;
Llosa, J .
PHYSICAL REVIEW D, 2001, 63 (04)
[9]  
Kilbas A.A., 2006, theory and applications of fractional differential equations, V13