Truncation invariant dependence structures

被引:10
作者
Sungur, EA [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Morris, MN 56267 USA
关键词
copulas; 3-dimensional distributions; the Cook-Johnson distribution; multivariate normal distribution; truncated distributions;
D O I
10.1080/03610929908832438
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a special class of m-dimensional distribution functions which can be uniquely determined in terms of their 2-dimensional marginals is studied. The members of the class can be characterized as having truncation invariant dependence structure. The representation given in this paper provides a physical meaning to the multivariate Cook-Johnson distribution, and introduces a systematic way of generating higher dimensional distributions by using rich 2-dimensional distributions provided that the 2-dimensional marginals are compatible. A class of 3-dimensional multivariate normal distribution has been generated and bounds in terms of lower dimensional marginals are provided.
引用
收藏
页码:2553 / 2568
页数:16
相关论文
共 18 条
[11]   Dependence and order in families of Archimedean copulas [J].
Nelsen, RB .
JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 60 (01) :111-122
[12]   ON NONPARAMETRIC MEASURES OF DEPENDENCE FOR RANDOM-VARIABLES [J].
SCHWEIZER, B ;
WOLFF, EF .
ANNALS OF STATISTICS, 1981, 9 (04) :879-885
[13]  
Schweizer B., 2011, Probabilistic metric spaces
[14]  
Sklar A., 1973, KYBERNETIKA, V09, P449, DOI DOI 10.1098/RSPA.2009.0502
[15]  
Sklar A., 1959, PUBL I STAT U PARIS, V8, P229
[16]  
SUNGUR AE, 1990, COMMUNICATION STAT, V14, P1338
[17]  
SUNGUR AE, 1991, FRONTIERS STAT COMPU, V1, P197
[18]   Diagonal copulas of Archimedean class [J].
Sungur, EA ;
Yang, YM .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (07) :1659-1676