Capacitive deionization concept based on suspension electrodes without ion exchange membranes

被引:105
作者
Hatzell, Kelsey B. [1 ,2 ]
Iwama, Etsuro [3 ,5 ]
Ferris, Anais [3 ]
Daffos, Barbara [3 ]
Urita, Koki [3 ,6 ]
Tzedakis, Theodore [4 ]
Chauvet, Fabien [4 ]
Taberna, Pierre-Louis [3 ]
Gogotsi, Yury [1 ,2 ]
Simon, Patrice [3 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[3] Univ Toulouse 3, UMR CNRS 5085, CIRIMAT, F-31062 Toulouse 9, France
[4] Univ Toulouse 3, INPT, Lab Genie Chim & Electrochim, F-31062 Toulouse 9, France
[5] Tokyo Univ Agr & Technol, Dept Appl Chem, Koganei, Tokyo 1848558, Japan
[6] Nagasaki Univ, Grad Sch Engn, Nagasaki 8528521, Japan
基金
欧洲研究理事会;
关键词
Capacitive deionization; Capacitive suspension electrodes; Water desalination; Electrochemical flow capacitor; Flowable electrodes; WATER DESALINATION; CARBON ELECTRODES; CHARGE EFFICIENCY; ENERGY; TECHNOLOGY;
D O I
10.1016/j.elecom.2014.03.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A new type of capacitive deionization (CDI) system, based on capacitive suspension electrodes (CSEs), was developed for the purpose of desalting brackish and seawater through the use of flowable carbon suspensions. CSEs derived from activated carbon and acetylene black demonstrated a specific capacitance of 92 F g(-1) in a static mode in a 0.6 M NaCl solution. The novel system introduced here is a proof of concept that capacitive suspension electrodes can be envisioned to desalt water without the aid of ion exchange membranes (IEMs). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 24 条
[1]  
Alsalmi H., 2013, P 6 MAK CIT LIV C 20, P5
[2]   Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? [J].
Anderson, Marc A. ;
Cudero, Ana L. ;
Palma, Jesus .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3845-3856
[3]   Limitation of Charge Efficiency in Capacitive Deionization [J].
Avraham, Eran ;
Bouhadana, Yaniv ;
Soffer, Abraham ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) :P95-P99
[4]  
Baird R.B., 2005, Standard methods for the examination of water and wastewater
[5]   Attractive forces in microporous carbon electrodes for capacitive deionization [J].
Biesheuvel, P. M. ;
Porada, S. ;
Levi, M. ;
Bazant, M. Z. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) :1365-1376
[6]  
Biesheuvel PM, 2014, ADV MAT TECH SER, P419
[7]   From dead leaves to high energy density supercapacitors [J].
Biswal, Mandakini ;
Banerjee, Abhik ;
Deo, Meenal ;
Ogale, Satishchandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1249-1259
[8]   Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors [J].
Campos, Jonathan W. ;
Beidaghi, Majid ;
Hatzell, Kelsey B. ;
Dennison, Christopher R. ;
Musci, Benjamin ;
Presser, Volker ;
Kumbur, Emin C. ;
Gogotsi, Yury .
ELECTROCHIMICA ACTA, 2013, 98 :123-130
[9]   Spark plasma sintered carbon electrodes for electrical double layer capacitor applications [J].
Daffos, B. ;
Chevallier, G. ;
Estournes, C. ;
Simon, P. .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1620-1625
[10]  
Darwish M.A., 2012, INTEGRATED WATER MAN