SMURF-seq: efficient copy number profiling on long-read sequencers

被引:8
|
作者
Prabakar, Rishvanth K. [1 ]
Xu, Liya [2 ]
Hicks, James [2 ]
Smith, Andrew D. [1 ]
机构
[1] Univ Southern Calif, Dept Biol Sci, Quantitat & Computat Biol Sect, 1050 Childs Way, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Michelson Ctr Convergent Biosci, 1002 Childs Way, Los Angeles, CA 90089 USA
关键词
Long-read sequencing; Nanopore sequencing; Copy number variation; Read-counting applications; GENOME; TIME;
D O I
10.1186/s13059-019-1732-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SMURF-seq, a protocol to efficiently sequence short DNA molecules on a long-read sequencer by randomly ligating them to form long molecules. Applying SMURF-seq using the Oxford Nanopore MinION yields up to 30 fragments per read, providing an average of 6.2 and up to 7.5 million mappable fragments per run, increasing information throughput for read-counting applications. We apply SMURF-seq on the MinION to generate copy number profiles. A comparison with profiles from Illumina sequencing reveals that SMURF-seq attains similar accuracy. More broadly, SMURF-seq expands the utility of long-read sequencers for read-counting applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SMURF-seq: efficient copy number profiling on long-read sequencers
    Rishvanth K. Prabakar
    Liya Xu
    James Hicks
    Andrew D. Smith
    Genome Biology, 20
  • [2] Author Correction: SMURF-seq: efficient copy number profiling on long-read sequencers
    Rishvanth K. Prabakar
    Liya Xu
    James Hicks
    Andrew D. Smith
    Genome Biology, 21
  • [3] SMURF-seq: efficient copy number profiling on long-read sequencers (vol 20, 134, 2019)
    Prabakar, Rishvanth K.
    Xu, Liya
    Hicks, James
    Smith, Andrew D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [4] BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper
    Guidi, Giulia
    Ellis, Marquita
    Rokhsar, Daniel
    Yelick, Katherine
    Buluc, Aydin
    PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, : 123 - 134
  • [5] Analysis of cancer-related transcriptional variants with long-read sequencers
    Kawazu, Masahito
    Morinaga, Takao
    Lin, Jason
    CANCER SCIENCE, 2024, 115 : 1305 - 1305
  • [6] Assessment of long-read assemblers for sequencing genetic regions with long and high copy number variations
    Tanaka, Noriko
    Onishi, Yuki
    Yamasaki, Maria
    Kifushi, Masako
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 1159 - 1159
  • [7] Profiling the epigenome using long-read sequencing
    Liu, Tianyuan
    Conesa, Ana
    NATURE GENETICS, 2025, 57 (01) : 27 - 41
  • [8] Comprehensive assessment of long-read sequencing platforms and calling algorithms for detection of copy number variation
    Yuan, Na
    Jia, Peilin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [9] Methodologies for Transcript Profiling Using Long-Read Technologies
    Oikonomopoulos, Spyros
    Bayega, Anthony
    Fahiminiya, Somayyeh
    Djambazian, Haig
    Berube, Pierre
    Ragoussis, Jiannis
    FRONTIERS IN GENETICS, 2020, 11
  • [10] DELongSeq for efficient detection of differential isoform expression from long-read RNA-seq data
    Hu, Yu
    Gouru, Anagha
    Wang, Kai
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (01)