Cosmological solutions in Einstein-Gauss-Bonnet gravity with static curved extra dimensions

被引:7
|
作者
Chirkov, Dmitry [1 ,2 ]
Giacomini, Alex [3 ]
Pavluchenko, Sergey A. [4 ]
Toporensky, Alexey [1 ,5 ]
机构
[1] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia
[2] Bauman Moscow State Tech Univ, Moscow, Russia
[3] Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia, Chile
[4] Univ Fed Maranhao UFMA, Programa Posgrad Fis, BR-65085580 Sao Luis, Maranhao, Brazil
[5] Kazan Fed Univ, Kremlevskaya 18, Kazan 420008, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 02期
关键词
D O I
10.1140/epjc/s10052-021-08934-y
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we perform systematic investigation of all possible solutions with static compact extra dimensions and expanding three-dimensional subspace ("our Universe"). Unlike previous papers, we consider extra-dimensional subspace to be constant-curvature manifold with both signs of spatial curvature. We provide a scheme how to build solutions in all possible number of extra dimensions and perform stability analysis for the solutions found. Our study suggests that the solutions with negative spatial curvature of extra dimensions are always stable while those with positive curvature are stable for a narrow range of the parameters and the width of this range shrinks with growth of the number of extra dimensions. This explains why in the previous papers we detected compactification in the case of negative curvature but the case of positive curvature remained undiscovered. Another interesting feature which distinguish cases with positive and negative curvatures is that the latter do not coexist with maximally-symmetric solutions (leading to "geometric frustration" of a sort) while the former could - this difference is noted and discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Cosmological dynamics in higher-dimensional Einstein-Gauss-Bonnet gravity
    Canfora, Fabrizio
    Giacomini, Alex
    Pavluchenko, Sergey A.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (10) : 1 - 14
  • [12] Cosmological constraints on 4-dimensional Einstein-Gauss-Bonnet gravity
    Zanoletti, C. M. A.
    Hull, B. R.
    Leonard, C. D.
    Mann, R. B.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (01):
  • [13] Examples of Exact Exponential Cosmological Solutions with Three Isotropic Subspaces in Einstein-Gauss-Bonnet Gravity
    Ernazarov, K. K.
    GRAVITATION & COSMOLOGY, 2022, 28 (04): : 420 - 425
  • [14] On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology Sn x Sn
    Dadhich, Naresh
    Pons, Josep M.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (06):
  • [15] Radiating black hole solutions in Einstein-Gauss-Bonnet gravity
    Dominguez, AE
    Gallo, E
    PHYSICAL REVIEW D, 2006, 73 (06):
  • [16] Cosmological Solutions in the Lovelock Theory and the Einstein-Gauss-Bonnet Theory with a Dilaton
    Kirnos, I. V.
    Makarenko, A. N.
    Osetrin, K. E.
    GRAVITATION & COSMOLOGY, 2009, 15 (01): : 59 - 61
  • [17] Critical collapse in Einstein-Gauss-Bonnet gravity in five and six dimensions
    Deppe, N.
    Leonard, C. D.
    Taves, T.
    Kunstatter, G.
    Mann, R. B.
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [18] Cosmological solutions in the Lovelock theory and the Einstein-Gauss-Bonnet theory with a dilaton
    I. V. Kirnos
    A. N. Makarenko
    K. E. Osetrin
    Gravitation and Cosmology, 2009, 15 : 59 - 61
  • [19] Inflation driven by Einstein-Gauss-Bonnet gravity
    Chakraborty, Sumanta
    Paul, Tanmoy
    SenGupta, Soumitra
    PHYSICAL REVIEW D, 2018, 98 (08)
  • [20] Rescaled Einstein-Gauss-Bonnet gravity inflation
    Oikonomou, V. K.
    Gkioni, Ardit
    Sdranis, Iason
    Tsyba, Pyotr
    Razina, Olga
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (07)