Inverse Hysteresis and Ultrasmall Hysteresis Thin-Film Transistors Fabricated Using Sputtered Dielectrics

被引:8
作者
Zhao, Yudan [1 ,2 ]
Huo, Yujia [1 ,2 ]
Xiao, Xiaoyang [1 ,2 ]
Wang, Yingcheng [1 ,2 ]
Zhang, Tianfu [1 ,2 ]
Jiang, Kaili [1 ,2 ]
Wang, Jiaping [1 ,2 ]
Fan, Shoushan [1 ,2 ]
Li, Qunqing [1 ,2 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
来源
ADVANCED ELECTRONIC MATERIALS | 2017年 / 3卷 / 03期
关键词
carbon nanotubes; hysteresis; magnetron sputtering; MoS2; TFTs; CARBON NANOTUBE TRANSISTORS; THRESHOLD VOLTAGE; LOGIC-CIRCUITS; MOS2; OXIDE; TRANSPORT; LAYERS; LEVEL;
D O I
10.1002/aelm.201600483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large current hysteresis is observed in carbon nanotube (CNT) transistors and usually shows as a positive threshold voltage shift when the gate sweeping direction changes from positive to negative. This paper reports fabrication of inverse hysteresis CNT thin-film transistors (TFTs) using magnetron sputtered oxide as a dielectric. Stacking of the sputtered dielectric with dielectrics deposited by other methods, such as atomic layer deposition, can effectively reduce or even eliminate the hysteresis. This can be explained as a combination of the effects of surface and interface trapped charges. Additionally, this hysteresis reduction method is widely compatible with various CNT-TFT structures and types and is even suitable for MoS2 TFTs. The output characteristics and frequency responses of large and small hysteresis devices are compared and show that the small-hysteresis inverter has lower distortion, and that its maximum operating frequency is nearly five times larger than that of TFTs with normal hysteresis.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method [J].
Balendhran, Sivacarendran ;
Ou, Jian Zhen ;
Bhaskaran, Madhu ;
Sriram, Sharath ;
Ippolito, Samuel ;
Vasic, Zoran ;
Kats, Eugene ;
Bhargava, Suresh ;
Zhuiykov, Serge ;
Kalantar-zadeh, Kourosh .
NANOSCALE, 2012, 4 (02) :461-466
[2]   Plastic deformations in mechanically strained single-walled carbon nanotubes [J].
Bozovic, D ;
Bockrath, M ;
Hafner, JH ;
Lieber, CM ;
Park, H ;
Tinkham, M .
PHYSICAL REVIEW B, 2003, 67 (03)
[3]   Wafer-Level Hysteresis-Free Resonant Carbon Nanotube Transistors [J].
Cao, Ji ;
Bartsch, Sebastian T. ;
Ionescu, Adrian M. .
ACS NANO, 2015, 9 (03) :2836-2842
[4]   Control of Current Hysteresis of Networked Single-Walled Carbon Nanotube Transistors by a Ferroelectric Polymer Gate Insulator [J].
Choi, Yeon Sik ;
Sung, Jinwoo ;
Kang, Seok Ju ;
Cho, Sung Hwan ;
Hwang, Ihn ;
Hwang, Sun Kak ;
Huh, June ;
Kim, Ho-Cheol ;
Bauer, Siegfried ;
Park, Cheolmin .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (09) :1120-1128
[5]  
Cu J., 2016, SMALL, V12, P4993
[6]   Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J].
Estrada, David ;
Dutta, Sumit ;
Liao, Albert ;
Pop, Eric .
NANOTECHNOLOGY, 2010, 21 (08)
[7]   Electrical and structural characteristics of yttrium oxide films deposited by rf-magnetron sputtering on n-Si [J].
Evangelou, EK ;
Wiemer, C ;
Fanciulli, M ;
Sethu, M ;
Cranton, W .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (01) :318-325
[8]   Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency [J].
Franklin, Aaron D. ;
Tulevski, George S. ;
Han, Shu-Jen ;
Shahrjerdi, Davood ;
Cao, Qing ;
Chen, Hong-Yu ;
Wong, H. -S. Philip ;
Haensch, Wilfried .
ACS NANO, 2012, 6 (02) :1109-1115
[9]   High-mobility nanotube transistor memory [J].
Fuhrer, MS ;
Kim, BM ;
Durkop, T ;
Brintlinger, T .
NANO LETTERS, 2002, 2 (07) :755-759
[10]   Complementary Logic Gate Arrays Based on Carbon Nanotube Network Transistors [J].
Gao, Pingqi ;
Zou, Jianping ;
Li, Hong ;
Zhang, Kang ;
Zhang, Qing .
SMALL, 2013, 9 (06) :813-819