Facile one-step synthesis of a Co3O4- and CNT-doped 3D-Ti/PbO2 electrode with a high surface for zinc electrowinning

被引:16
作者
Wang, Xuanbing [1 ,2 ]
Xu, Ruidong [1 ,2 ]
Feng, Suyang [1 ,2 ]
Chen, Chen [2 ]
Chen, Buming [2 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc electrowinning; 3D-Ti/PbO2; Oxygen evolution reaction; Co3O4; CNT; LEAD DIOXIDE ELECTRODE; OXYGEN EVOLUTION; CORROSION-RESISTANCE; ANODIC-OXIDATION; WATER OXIDATION; ACID-SOLUTION; PBO2; DEGRADATION; MECHANISM; NANOPARTICLES;
D O I
10.1016/j.hydromet.2020.105529
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In this paper, a Co3O4- and CNT-doped 3D PbO2 electrode was fabricated through galvanostatic electrodeposition in a Pb(Ac)(2)-NH2S3H solution, and the electrochemical properties were systematically investigated in a zinc electrolyte. The XRD results show that the deposit is a mixture of an alpha + beta phase (a dominant beta-PbO2 phase with a minor alpha-PbO2 phase present), and the SEM images show that Co3O4 and CNT have been simultaneously deposited with PbO2. The 3D-Ti/PbO2-(4 g.L-1) Co3O4-(0.4 g.L-1) CNT electrode exhibits a voltammetric charge 5 times larger than that of the 3D-Ti/PbO2 electrode, which indicates outstanding electrocatalytic activity. The oxygen evolution reaction overpotential and cell voltage are only 394 mV and 3.74 V at 500 A . m(-2), respectively. In addition, the obtained electrode showed a high current efficiency of 95.3% and a service life of 26 h under a current density of 20,000 A . m(-2). Hence, this study offers a facial synthesis route to prepare composite electrodes for zinc electrowinning and provides deep insight into the relationship among doping substances, microstructures and electrocatalytic activity.
引用
收藏
页数:12
相关论文
共 45 条
[21]   Electrodeposited lead dioxide coatings [J].
Li, Xiaohong ;
Pletcher, Derek ;
Walsh, Frank C. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (07) :3879-3894
[22]   Nitrogen-Doped Cobalt Pyrite Yolk-Shell Hollow Spheres for Long-Life Rechargeable Zn-Air Batteries [J].
Lu, Xue Feng ;
Zhang, Song Lin ;
Shangguan, Enbo ;
Zhang, Peng ;
Gao, Shuyan ;
Lou, Xiong Wen .
ADVANCED SCIENCE, 2020, 7 (22)
[23]   Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning [J].
Ma, Ruixin ;
Cheng, Shiyao ;
Zhang, Xiaoyong ;
Li, Shina ;
Liu, Zilin ;
Li, Xiang .
HYDROMETALLURGY, 2016, 159 :6-11
[24]   Nanoparticles of IrO2 or Sb-SnO2 increase the performance of iridium oxide DSA electrodes [J].
Marshall, Aaron T. ;
Haverkamp, Richard G. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (03) :1135-1141
[25]   ELECTRICAL PROPERTIES OF ELECTRODEPOSITED PBO2 FILMS [J].
MINDT, W .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (08) :1076-&
[26]   Current efficiency studies of the zinc electrowinning process on aluminum rotating cylinder electrode (RCE) in sulfuric acid medium:: Influence of different additives [J].
Recendiz, Alejandro ;
Gonzalez, Ignacio ;
Nava, Jose L. .
ELECTROCHIMICA ACTA, 2007, 52 (24) :6880-6887
[27]   EXPERIMENTAL-DETERMINATION OF THE FACTORS AFFECTING ZINC ELECTROWINNING EFFICIENCY [J].
SCOTT, AC ;
PITBLADO, RM ;
BARTON, GW ;
AULT, AR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1988, 18 (01) :120-127
[28]   Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties [J].
Shmychkova, O. ;
Luk'yanenko, T. ;
Velichenko, A. ;
Meda, L. ;
Amadelli, R. .
ELECTROCHIMICA ACTA, 2013, 111 :332-338
[29]   Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition [J].
Wang, Canyong ;
Wang, Fengwu ;
Xu, Mai ;
Zhu, ChuanGao ;
Fang, Wenyan ;
Wei, Yijun .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 759 :158-166
[30]   In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4 [J].
Wang, Hsin-Yi ;
Hung, Sung-Fu ;
Chen, Han-Yi ;
Chan, Ting-Shan ;
Chen, Hao Ming ;
Liu, Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (01) :36-39