SOLUTIONS OF THE 4-SPECIES QUADRATIC REACTION-DIFFUSION SYSTEM ARE BOUNDED AND C∞-SMOOTH, IN ANY SPACE DIMENSION

被引:23
作者
Caputo, M. Cristina [1 ]
Goudon, Thierry [2 ]
Vasseur, Alexis F. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Cote Azur, INRIA, CNRS, LIAD, Nice, France
关键词
reaction-diffusion systems; global regularity; blow-up methods; GLOBAL EXISTENCE; REGULARITY; MASS;
D O I
10.2140/apde.2019.12.1773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the boundedness of solutions of reaction-diffusion systems with quadratic (in fact slightly superquadratic) reaction terms that satisfy a natural entropy dissipation property, in any space dimension N > 2. This bound implies the C-infinity-regularity of the solutions. This result extends the theory which was restricted to the two-dimensional case. The proof heavily uses De Giorgi's iteration scheme, which allows us to obtain local estimates. The arguments rely on duality reasoning in order to obtain new estimates on the total mass of the system, both in the L(N + 1)/N norm and in a suitable weak norm. The latter uses C-alpha regularization properties for parabolic equations.
引用
收藏
页码:1773 / 1804
页数:32
相关论文
共 35 条
[1]  
Alikakos N. D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]   Analysis of a chemotaxis system modeling ant foraging [J].
Alonso, Ricardo ;
Amorim, Paulo ;
Goudon, Thierry .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (09) :1785-1824
[3]  
[Anonymous], 1976, SIBIRSK MAT Z
[4]  
[Anonymous], 1966, Vestnik Leningrad. Univ.
[5]  
Bakel'man I., 1961, Siberian Math. J, V2, P179
[6]  
Brezis H., 1983, Analyse Fonctionnelle Theorie et Applications
[7]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[8]   Improved Duality Estimates and Applications to Reaction-Diffusion Equations [J].
Canizo, Jose A. ;
Desvillettes, Laurent ;
Fellner, Klemens .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (06) :1185-1204
[9]   Global Regularity of Solutions to Systems of Reaction-Diffusion with Sub-Quadratic Growth in Any Dimension [J].
Caputo, M. Cristina ;
Vasseur, Alexis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (10) :1228-1250
[10]   Positive Lower Bound for the Numerical Solution of a Convection-Diffusion Equation [J].
Chainais-Hillairet, Claire ;
Merlet, Benoit ;
Vasseur, Alexis F. .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 :331-339