3D microfluidics via cyclic olefin polymer-based in situ direct laser writing

被引:57
作者
Alsharhan, Abdullah T. [1 ]
Acevedo, Ruben [1 ]
Warren, Roseanne [2 ]
Sochol, Ryan D. [1 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Univ Utah, Mech Engn, Salt Lake City, UT 84112 USA
[3] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[4] Univ Maryland, Robert E Fischell Inst Biomed Devices, College Pk, MD 20742 USA
[5] Univ Maryland, Maryland Robot Ctr, College Pk, MD 20742 USA
[6] Univ Maryland, 2147 Glenn L Martin Hall, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
FABRICATION; COPOLYMER; PHANTOMS; RESOLUTION; CHANNELS;
D O I
10.1039/c9lc00542k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In situ direct laser writing (isDLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for isDLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing (e.g., operational pressures < 50-75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for isDLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) "2.5D" functionally static fluidic barriers (10-100 mu m in height), which supported uncompromised structure-tochannel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvesselinspired structures (inner diameters < 10 mu m) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based isDLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits.
引用
收藏
页码:2799 / 2810
页数:12
相关论文
共 59 条
[1]   Rapid prototyping of cyclic olefin copolymer (COC) microfluidic devices [J].
Aghvami, S. Ali ;
Opathalage, Achini ;
Zhang, Z. K. ;
Ludwig, Markus ;
Heymann, Michael ;
Norton, Michael ;
Wilkins, Niya ;
Fraden, Seth .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 247 :940-949
[2]   3D-printed microfluidic automation [J].
Au, Anthony K. ;
Bhattacharjee, Nirveek ;
Horowitz, Lisa F. ;
Chang, Tim C. ;
Folch, Albert .
LAB ON A CHIP, 2015, 15 (08) :1934-1941
[3]   Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions [J].
Barata, D. ;
Provaggi, E. ;
van Blitterswijk, C. ;
Habibovic, P. .
LAB ON A CHIP, 2017, 17 (23) :4134-4147
[4]   The upcoming 3D-printing revolution in microfluidics [J].
Bhattacharjee, Nirveek ;
Urrios, Arturo ;
Kanga, Shawn ;
Folch, Albert .
LAB ON A CHIP, 2016, 16 (10) :1720-1742
[5]   Microfluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices [J].
Bleilevens, Christian ;
Loelsberg, Jonas ;
Cinar, Arne ;
Knoben, Maren ;
Grottke, Oliver ;
Rossaint, Rolf ;
Wessling, Matthias .
SCIENTIFIC REPORTS, 2018, 8
[6]   Guided and fluidic self-assembly of microstructures using railed microfluidic channels [J].
Chung, Su Eun ;
Park, Wook ;
Shin, Sunghwan ;
Lee, Seung Ah ;
Kwon, Sunghoon .
NATURE MATERIALS, 2008, 7 (07) :581-587
[7]  
Dawson JG, 2017, PROC IEEE MICR ELECT, P426, DOI 10.1109/MEMSYS.2017.7863433
[8]   Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices [J].
Denz, Manuela ;
Brehm, Gerrit ;
Hemonnot, Clement Y. J. ;
Spears, Heidi ;
Wittmeier, Andrew ;
Cassini, Chiara ;
Saldanha, Oliva ;
Perego, Eleonora ;
Diaz, Ana ;
Burghammer, Manfred ;
Koester, Sarah .
LAB ON A CHIP, 2018, 18 (01) :171-178
[9]   In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration [J].
Dietrich, P. -I. ;
Blaicher, M. ;
Reuter, I. ;
Billah, M. ;
Hoose, T. ;
Hofmann, A. ;
Caer, C. ;
Dangel, R. ;
Offrein, B. ;
Troppenz, U. ;
Moehrle, M. ;
Freude, W. ;
Koos, C. .
NATURE PHOTONICS, 2018, 12 (04) :241-+
[10]   A practical approach for the optimization of channel integrity in the sealing of shallow microfluidic devices made from cyclic olefin polymer [J].
Ganser, Philipp ;
Baum, Christoph ;
Chargin, David ;
Sauer-Budge, Alexis F. ;
Sharon, Andre .
BIOMEDICAL MICRODEVICES, 2018, 20 (02)