Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy

被引:64
作者
Peng, Boya [1 ,2 ,3 ]
Nguyen, Trinh Mai [4 ,5 ]
Jayasinghe, Migara Kavishka [1 ,2 ,3 ]
Gao, Chang [1 ,2 ,3 ]
Pham, Thach Tuan [1 ,2 ,3 ]
Vu, Luyen Tien [1 ,2 ,3 ]
Yeo, Eric Yew Meng [1 ,2 ,3 ]
Yap, Gracemary [1 ,2 ,3 ]
Wang, Lingzhi [6 ]
Goh, Boon Cher [6 ]
Tam, Wai Leong [6 ,7 ]
Luo, Dahai [4 ,5 ]
Le, Minh T. N. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pharmacol, MD3-04-01,16 Med Dr, Singapore 117600, Singapore
[2] Natl Univ Singapore, Yong Loo Lin Sch Med, Inst Digital Med, Singapore, Singapore
[3] Natl Univ Singapore, Dept Surg, Immunol Program,Yong Loo Lin Sch Med, Canc Program & Nanomed Translat Program, Singapore, Singapore
[4] Nanyang Technol Univ, Lee Kong Chian Sch Med, Singapore, Singapore
[5] Nanyang Technol Univ, NTU Inst Struct Biol, Singapore, Singapore
[6] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[7] ASTAR, Genome Inst Singapore, Singapore, Singapore
基金
美国国家科学基金会;
关键词
cancer; extracellular vesicles; immunotherapy; RIG-I; RNA delivery; IMMUNE-RESPONSE; INNATE; DETERMINANTS; INFLAMMATION; RECOGNITION; ELIMINATION; ACTIVATION; HELICASES; CELLS;
D O I
10.1002/jev2.12187
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The RIG-I pathway can be activated by RNA containing 5' triphosphate, leading to type I interferon release and immune activation. Hence, RIG-I agonists have been used to induce immune responses against cancer as potential immunotherapy. However, delivery of 5' triphosphorylated RNA molecules as RIG-I agonists to tumour cells in vivo is challenging due to the susceptibility of these molecules to degradation. In this study, we demonstrate the use of extracellular vesicles (EVs) from red blood cells (RBCs), which are highly amenable for RNA loading and taken up robustly by cancer cells, for RIG-I agonist delivery. We evaluate the anti-cancer activity of two novel RIG-I agonists, the immunomodulatory RNA (immRNA) with a unique secondary structure for efficient RIG-I activation, and a 5' triphosphorylated antisense oligonucleotide with dual function of RIG-I activation and miR-125b inhibition (3p-125b-ASO). We find that RBCEV-delivered immRNA and 3p-125b-ASO trigger the RIG-I pathway, and induce cell death in both mouse and human breast cancer cells. Furthermore, we observe a significant suppression of tumour growth coupled with increased immune cell infiltration mediated by the activation of RIG-I cascade after multiple intratumoral injections of RBCEVs loaded with immRNA or 3p-125b-ASO. Targeted delivery of immRNA using RBCEVs with EGFR-binding nanobody administrated via intrapulmonary delivery facilitates the accumulation of RBCEVs in metastatic cancer cells, leading to potent tumour-specific CD8(+) T cells immune response. This contributes to prominent suppression of breast cancer metastasis in the lung. Hence, this study provides a new strategy for efficient RIG-I agonist delivery using RBCEVs for immunotherapy against cancer and cancer metastasis.
引用
收藏
页数:26
相关论文
共 48 条
[1]   Improving in Vivo Hepatic Transfection Activity by Controlling Intracellular Trafficking: The Function of GALA and Maltotriose [J].
Akita, Hidetaka ;
Masuda, Tomoya ;
Nishio, Takashi ;
Niikura, Kenichi ;
Ijiro, Kuniharu ;
Harashima, Hideyoshi .
MOLECULAR PHARMACEUTICS, 2011, 8 (04) :1436-1442
[2]   Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells [J].
Besch, Robert ;
Poeck, Hendrik ;
Hohenauer, Tobias ;
Senft, Daniela ;
Haecker, Georg ;
Berking, Carola ;
Hornung, Veit ;
Endres, Stefan ;
Ruzicka, Thomas ;
Rothenfusser, Simon ;
Hartmann, Gunther .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (08) :2399-2411
[3]   Cell-Type-Specific Innate Immune Response to Oncolytic Newcastle Disease Virus [J].
Biswas, Moanaro ;
Kumar, Sandeep R. P. ;
Allen, Adria ;
Yong, Wang ;
Nimmanapalli, Ramadevi ;
Samal, Siba K. ;
Elankumaran, Subbiah .
VIRAL IMMUNOLOGY, 2012, 25 (04) :268-276
[4]   Harnessing the immune system to fight cancer with Toll-like receptor and RIG-I-like receptor agonists [J].
Bourquin, Carole ;
Pommier, Aurelien ;
Hotz, Christian .
PHARMACOLOGICAL RESEARCH, 2020, 154
[5]  
Chery Jessica, 2016, Postdoc J, V4, P35, DOI 10.14304/surya.jpr.v4n7.5
[6]   Paving the Road for RNA Therapeutics [J].
Dammes, Niels ;
Peer, Dan .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2020, 41 (10) :755-775
[7]   Nanoparticle Delivery of RIG-I Agonist Enables Effective and Safe Adjuvant Therapy in Pancreatic Cancer [J].
Das, Manisit ;
Shen, Limei ;
Liu, Qi ;
Goodwin, Tyler J. ;
Huang, Leaf .
MOLECULAR THERAPY, 2019, 27 (03) :507-517
[8]  
Delaney N, 2019, LANCET HAEMATOL, V6, pE48, DOI [10.1016/S2352-3026(18)30175-3, 10.1016/52352-3026(18)30175-3]
[9]   RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells [J].
Duewell, P. ;
Steger, A. ;
Lohr, H. ;
Bourhis, H. ;
Hoelz, H. ;
Kirchleitner, S. V. ;
Stieg, M. R. ;
Grassmann, S. ;
Kobold, S. ;
Siveke, J. T. ;
Endres, S. ;
Schnurr, M. .
CELL DEATH AND DIFFERENTIATION, 2014, 21 (12) :1825-1837
[10]   Therapeutic Efficacy of Bifunctional siRNA Combining TGF-β1 Silencing with RIG-I Activation in Pancreatic Cancer [J].
Ellermeier, Jonathan ;
Wei, Jiwu ;
Duewell, Peter ;
Hoves, Sabine ;
Stieg, Mareike R. ;
Adunka, Tina ;
Noerenberg, Daniel ;
Anders, Hans-Joachim ;
Mayr, Doris ;
Poeck, Hendrik ;
Hartmann, Gunther ;
Endres, Stefan ;
Schnurr, Max .
CANCER RESEARCH, 2013, 73 (06) :1709-1720