A hybrid intelligent approach for constructing landslide displacement prediction intervals
被引:96
|
作者:
Wang, Yankun
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
Wang, Yankun
[1
]
Tang, Huiming
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
China Univ Geosci, Three Gorges Res Ctr Geohazards, Minist Educ, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
Tang, Huiming
[1
,2
]
Wen, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Hubei, Peoples R ChinaChina Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
Wen, Tao
[3
]
Ma, Junwei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Three Gorges Res Ctr Geohazards, Minist Educ, Wuhan 430074, Hubei, Peoples R ChinaChina Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
Ma, Junwei
[2
]
机构:
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Three Gorges Res Ctr Geohazards, Minist Educ, Wuhan 430074, Hubei, Peoples R China
[3] Yangtze Univ, Sch Geosci, Wuhan 430100, Hubei, Peoples R China
Accurate and reliable landslide displacement predictions are important for providing early warning regarding the occurrence of landslides. Machine learning methods are widely used for point predictions of landslide displacement because of their powerful nonlinear processing ability. However, due to the uncertainties involved in landslide systems, prediction errors are unavoidable in traditional point prediction methods. To quantify the uncertainties associated with point forecasting, we apply prediction intervals (PIs) to predict landslide displacement rather than using point predictions. A hybrid double exponential smoothing (DES) and lower and upper bound estimation (LUBE) model is proposed to construct the PIs of landslide displacement. In LUBE, an extreme machine learning (ELM) model with two outputs optimized by the particle swarm optimization (PSO) algorithm (PSO-ELM) is applied to directly estimate the lower and upper bounds of future displacement. The proposed DES-PSO-ELM method consists of three steps. First, DES is applied to predict the linear component of the cumulative displacement of the landslide. Second, the partial autocorrelation function (PACF) and maximum information coefficient (MIC) are used to select the optimal variables that influence the nonlinear component (residuals from the first step); then, these variables are used as inputs for the PSO-ELM method to construct the PIs of the nonlinear component. An ensemble technique is also applied to improve the stability and accuracy of PSO-ELM. Finally, the PIs of cumulative displacement are obtained by adding the predicted linear component and the PIs of the nonlinear component. The Baishuihe landslide and Shuping landslide in the Three Gorges Reservoir area were selected to test the effectiveness of the proposed method. A comparison of the results shows that the proposed method performs better and can provide high-quality PIs of landslide displacement. (C) 2019 Published by Elsevier B.V.
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Jia, Wenjun
Wen, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Hubei Yangtze Univ, Technol Dev Co Ltd, Jiacha Cty Branch, Shannan 856499, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Wen, Tao
Li, Decheng
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Li, Decheng
Guo, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Guo, Wei
Quan, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Quan, Zhi
Wang, Yihui
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Wang, Yihui
Huang, Dexin
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Huang, Dexin
Hu, Mingyi
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
Hubei Yangtze Univ, Technol Dev Co Ltd, Jiacha Cty Branch, Shannan 856499, Peoples R ChinaYangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
机构:
Natl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China
China Univ Geosci, Minist Educ, Three Gorges Res Ctr Geohazards, Wuhan 430074, Hubei, Peoples R ChinaNatl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China
Ma, Junwei
Xia, Ding
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R ChinaNatl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China
Xia, Ding
Guo, Haixiang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Econ & Management, Wuhan 430074, Hubei, Peoples R ChinaNatl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China
Guo, Haixiang
Wang, Yankun
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Geosci, Wuhan 430100, Hubei, Peoples R ChinaNatl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China
Wang, Yankun
Niu, Xiaoxu
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Minist Educ, Three Gorges Res Ctr Geohazards, Wuhan 430074, Hubei, Peoples R ChinaNatl Observat & Res Stn Geohazards Three Gorges R, Wuhan 430074, Peoples R China