Nonlocal subpicosecond delay metrology using spectral quantum interference
被引:3
作者:
Seshadri, Suparna
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USAPurdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Seshadri, Suparna
[1
,2
]
论文数: 引用数:
h-index:
机构:
Lingaraju, Navin
[1
,2
,3
]
Lu, Hsuan -Hao
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
Oak Ridge Natl Lab, Quantum Informat Sci Sect, Oak Ridge, TN 37831 USAPurdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Lu, Hsuan -Hao
[1
,2
,4
]
Imany, Poolad
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Stand & Technol, Boulder, CO 80305 USA
Univ Colorado, Dept Phys, Boulder, CO 80309 USAPurdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Imany, Poolad
[5
,6
]
Leaird, Daniel E.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USAPurdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Leaird, Daniel E.
[1
,2
]
Weiner, Andrew M.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USAPurdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
Weiner, Andrew M.
[1
,2
]
机构:
[1] Purdue Univ, Purdue Quantum Sci & Engn Inst, West Lafayette, Indiana, PA 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] SRI Int, Adv Technol & Syst Div, Arlington, VA 22209 USA
[4] Oak Ridge Natl Lab, Quantum Informat Sci Sect, Oak Ridge, TN 37831 USA
[5] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[6] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
Precise knowledge of position and timing information is critical to support elementary protocols such as entanglement swapping on quantum networks. While approaches have been devised to use quantum light for such metrology, they largely rely on time-of-flight (ToF) measurements with single-photon detectors and, therefore, are limited to picosecond-scale resolution owing to detector jitter. In this work, we demonstrate an approach to distributed sensing that leverages phase modulation to map changes in the spectral phase to coincidence probability, thereby overcoming the limits imposed by single-photon detection. By extracting information about the joint biphoton phase, we measure a generalized delay-the difference in signal-idler arrival, relative to local radio frequency (RF) phase modulation. For nonlocal ranging measurements, we achieve (2 sigma) precision of +/- 0.04 ps and for measurements of the relative RF phase, (2 sigma) precision of +/- 0.7 degrees. We complement this fine timing information with ToF data from single-photon time-tagging to demonstrate absolute measurement of time delay. By relying on off-the-shelf telecommunications equipment and standard quantum resources, this approach has the potential to reduce overhead in practical quantum networks.