Compact LWIR polarimeter for cirrus ice properties

被引:6
作者
Hart, Kira A. [1 ]
Chipman, Russell A. [1 ]
Wu, Dong L. [2 ]
机构
[1] Univ Arizona, 1630 E Univ Blvd, Tucson, AZ 85721 USA
[2] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING XIII | 2018年 / 10655卷
关键词
channeled spectro-polarimeter; LWIR; ice clouds; remote sensing; Wollaston prism;
D O I
10.1117/12.2305106
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A miniaturized long-wave InfraRed (LWIR) spectro-polarimeter is being developed as a prototype for the Compact Submm-Wave and LWIR Polarimeters (SWIRP) project. The polarimeter in development is a compact (20x20x40 cm) conical-scan instrument to measure the polarimetric radiation from ice cloud scattering at mm-submm (220 and 680 GHz) and IR (8.6, 11, and 12 m) bands. The LWIR polarimeter will provide a series of polarization measurements across the 8.5 - 12.5 micron band, measuring the full set of linear Stokes parameters (I, Q, U) as a function of wavelength. The spectro-polarimeter uses a combination of birefringent crystals, a Wollaston prism, a diffraction grating, and an uncooled microbolometer array to measure both the degree and angle of linear polarization across the spectral bandwidth by modulating the polarization flux in wavelength with a high order retarder.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Noise properties of a corner-cube Michelson interferometer LWIR hyperspectral imager [J].
Bergstrom, D. ;
Renhorn, I. ;
Svensson, T. ;
Persson, R. ;
Hallberg, T. ;
Lindell, R. ;
Boreman, G. .
INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2, 2010, 7660
[22]   Retrieval of cirrus properties by Sun photometry: A new perspective on an old issue [J].
Segal-Rosenheimer, Michal ;
Russell, Philip B. ;
Livingston, John M. ;
Ramachandran, S. ;
Redemann, Jens ;
Baum, Bryan A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (10) :4503-4520
[23]   Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX) [J].
Alexandrov, Mikhail D. ;
Cairns, Brian ;
Wasilewski, Andrzej P. ;
Ackerman, Andrew S. ;
McGill, Matthew J. ;
Yorks, John E. ;
Hlavka, Dennis L. ;
Platnick, Steven E. ;
Arnold, G. Thomas ;
van Diedenhoven, Bastiaan ;
Chowdhary, Jacek ;
Ottaviani, Matteo ;
Knobelspiesse, Kirk D. .
REMOTE SENSING OF ENVIRONMENT, 2015, 169 :20-36
[24]   Properties of cirrus and subvisible cirrus from nighttime Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), related to atmospheric dynamics and water vapor [J].
Martins, E. ;
Noel, V. ;
Chepfer, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[25]   The impact of cirrus microphysical and macrophysical properties on upwelling far-infrared spectra [J].
Baran, Anthony J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (627) :1425-1437
[26]   Optical properties of contrail-induced cirrus: Discussion of unusual halo phenomena [J].
Sussmann, R .
APPLIED OPTICS, 1997, 36 (18) :4195-4201
[27]   Properties of Cirrus Clouds over the European Arctic (Ny-Alesund, Svalbard) [J].
Nakoudi, Konstantina ;
Ritter, Christoph ;
Stachlewska, Iwona S. .
REMOTE SENSING, 2021, 13 (22)
[28]   Estimation of cirrus cloud effective ice crystal shapes using visible reflectances from dual-satellite measurements [J].
Chepfer, H ;
Minnis, P ;
Young, D ;
Nguyen, L ;
Arduini, RF .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D23)
[29]   Calculation of backscattering matrix for ice particles of cirrus clouds for 1.55 and 2 micron lidars within the physical optics approximation [J].
Timofeev, Dmitriy N. ;
Konoshonkin, Alexander, V ;
Kustova, Natalia, V ;
Borovoi, Anatoli G. ;
Kozodoev, Aleksei, V .
REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXV, 2020, 11531
[30]   Optical Properties of Ice Clouds: New Modeling Capabilities and Relevant Applications [J].
Bi, Lei ;
Yang, Ping ;
Liu, Chao ;
Yi, Bingqi ;
Hioki, Souichiro .
Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 2014, 9259