A discrete Korn's inequality in two and three dimensions

被引:3
作者
Xu, XJ [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
Korn's inequality; Wilson's Element; Carey's Element;
D O I
10.1016/S0893-9659(99)00217-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a simple and general proof for Korn's inequality for nonconforming elements, like Wilson's Element and Carey's Element. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 34 条
[31]   Optimal Korn’s inequalities for divergence-free vector fields with application to incompressible linear elastodynamics [J].
Hiroya Ito .
Japan Journal of Industrial and Applied Mathematics, 1999, 16
[32]   Optimal Korn's inequalities for divergence-free vector fields with application to incompressible linear elastodynamics [J].
Ito, H .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 1999, 16 (01) :101-121
[33]   On the Optimal Constants in Korn's and Geometric Rigidity Estimates, in Bounded and Unbounded Domains, under Neumann Boundary Conditions [J].
Lewicka, Marta ;
Mueller, Stefan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (02) :377-397
[34]   On The Sharpness of a Korn’s Inequality For Piecewise H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} Space and Its Applications [J].
Qingguo Hong ;
Young-Ju Lee ;
Jinchao Xu .
Journal of Scientific Computing, 2025, 102 (1)