A discrete Korn's inequality in two and three dimensions

被引:3
作者
Xu, XJ [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
Korn's inequality; Wilson's Element; Carey's Element;
D O I
10.1016/S0893-9659(99)00217-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a simple and general proof for Korn's inequality for nonconforming elements, like Wilson's Element and Carey's Element. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 34 条
[21]   WEAK VECTOR AND SCALAR POTENTIALS: APPLICATIONS TO POINCARE'S THEOREM AND KORN'S INEQUALITY IN SOBOLEV SPACES WITH NEGATIVE EXPONENTS [J].
Amrouche, Cherif ;
Ciarlet, Philippe G. ;
Ciarlet, Patrick, Jr. .
ANALYSIS AND APPLICATIONS, 2010, 8 (01) :1-17
[22]   Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions [J].
Franz Gmeineder ;
Peter Lewintan ;
Patrizio Neff .
Calculus of Variations and Partial Differential Equations, 2023, 62
[24]   Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions [J].
Gmeineder, Franz ;
Lewintan, Peter ;
Neff, Patrizio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
[25]   A Note on Korn's Inequality in an N-Dimensional Context and a Global Existence Result for a Non-Linear Plate Model [J].
Botelho, Fabio Silva .
APPLIEDMATH, 2023, 3 (02) :406-416
[26]   Maxwell meets Korn: A new coercive inequality for tensor fields in RNxN with square-integrable exterior derivative [J].
Neff, Patrizio ;
Pauly, Dirk ;
Witsch, Karl-Josef .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (01) :65-71
[27]   Necas-Lions lemma revisited: An Lp-version of the generalized Korn inequality for incompatible tensor fields [J].
Lewintan, Peter ;
Neff, Patrizio .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) :11392-11403
[28]   Optimal exponentials of thickness in Korn’s inequalities for parabolic and elliptic shells [J].
Peng-Fei Yao .
Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 :379-401
[29]   Optimal exponentials of thickness in Korn's inequalities for parabolic and elliptic shells [J].
Yao, Peng-Fei .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) :379-401
[30]   Two low-order nonconforming finite element methods for the Stokes flow in three dimensions [J].
Hu, Jun ;
Schedensack, Mira .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) :1447-1470