Quantitative precipitation forecast using radar echo extrapolation

被引:26
|
作者
Novak, Petr [1 ]
Brezkova, Lucie [2 ]
Frolik, Petr [1 ]
机构
[1] Czech Hydrometeorol Inst, Radar Dept, Prague 14306, Czech Republic
[2] Czech Hydrometeorol Inst, Reg Off Brno, Dept Hydrol, Brno 61667, Czech Republic
关键词
Quantitative precipitation forecast; Nowcasting; Weather radar; Hydrological modeling; ALGORITHM;
D O I
10.1016/j.atmosres.2008.10.014
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The radar extrapolation method called COTREC ("Continuity of TREC vectors", where TREC stands for "Tracking Radar Echoes by Correlation") was originally developed in the Czech Hydrometeorological Institute for qualitative precipitation and severe storm nowcasting. New demands for better precipitation forecasts from the hydrological modeling community have led us to test quantitative precipitation forecasts (QPF) based on the COTREC method. Several case studies of flood events showed the potential benefit of COTREC-based QPF for hydrological modeling. Case study results were subsequently confirmed by statistical evaluation of the QPFs and a comparison with precipitation forecasts from the ALADIN numerical weather prediction model. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 50 条
  • [41] Polarimetric Radar Quantitative Precipitation Estimation
    Ryzhkov, Alexander
    Zhang, Pengfei
    Bukovcic, Petar
    Zhang, Jian
    Cocks, Stephen
    REMOTE SENSING, 2022, 14 (07)
  • [42] Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast
    Lee, Y. H.
    Park, S. K.
    Chang, D. -E.
    ANNALES GEOPHYSICAE, 2006, 24 (12) : 3185 - 3189
  • [43] Estimates of Spaceborne Precipitation Radar Pulsewidth and Beamwidth Using Sea Surface Echo Data
    Kanemaru, Kaya
    Iguchi, Toshio
    Masaki, Takeshi
    Kubota, Takuji
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5291 - 5303
  • [44] A STUDY ON VARIABLE QUANTITATIVE PRECIPITATION ESTIMATION USING DOPPLER RADAR DATA
    Ji Chun-xiao
    Chen Lian-shou
    Xu Xiang-de
    Zhao Fang
    Wu Meng-chun
    JOURNAL OF TROPICAL METEOROLOGY, 2008, 14 (02) : 109 - 112
  • [45] Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
    Jiang, Huangfu
    Hu, Zhiqun
    Zheng, Jiafeng
    Wang, Lirong
    Zhu, Yongjie
    ADVANCES IN ATMOSPHERIC SCIENCES, 2024, 41 (06) : 1147 - 1160
  • [46] A STUDY ON VARIABLE QUANTITATIVE PRECIPITATION ESTIMATION USING DOPPLER RADAR DATA
    冀春晓
    陈联寿
    徐祥德
    赵放
    吴孟春
    JournalofTropicalMeteorology, 2008, 14 (02) : 109 - 112
  • [47] Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
    Jiang HUANGFU
    Zhiqun HU
    Jiafeng ZHENG
    Lirong WANG
    Yongjie ZHU
    Advances in Atmospheric Sciences, 2024, 41 (06) : 1147 - 1160
  • [48] Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
    Jiang Huangfu
    Zhiqun Hu
    Jiafeng Zheng
    Lirong Wang
    Yongjie Zhu
    Advances in Atmospheric Sciences, 2024, 41 : 1147 - 1160
  • [49] Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
    Jiang HUANGFU
    Zhiqun HU
    Jiafeng ZHENG
    Lirong WANG
    Yongjie ZHU
    Advances in Atmospheric Sciences, 2024, (06) : 1147 - 1160
  • [50] Covariance propagation and updating in the context of real-time radar data assimilation by quantitative precipitation forecast models
    Georgakakos, KP
    JOURNAL OF HYDROLOGY, 2000, 239 (1-4) : 115 - 129