DICE: Leveraging Sparsification for Out-of-Distribution Detection

被引:42
|
作者
Sun, Yiyou [1 ]
Li, Yixuan [1 ]
机构
[1] Comp Scof Wisconsin Madison, Madison, WI 53706 USA
来源
COMPUTER VISION, ECCV 2022, PT XXIV | 2022年 / 13684卷
关键词
Out-of-distribution detection; Sparsification; NETWORKS;
D O I
10.1007/978-3-031-20053-3_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Previous methods commonly rely on an OOD score derived from the overparameterized weight space, while largely overlooking the role of sparsification. In this paper, we reveal important insights that reliance on unimportant weights and units can directly attribute to the brittleness of OOD detection. To mitigate the issue, we propose a sparsification-based OOD detection framework termed DICE. Our key idea is to rank weights based on a measure of contribution, and selectively use the most salient weights to derive the output for OOD detection. We provide both empirical and theoretical insights, characterizing and explaining the mechanism by which DICE improves OOD detection. By pruning away noisy signals, DICE provably reduces the output variance for OOD data, resulting in a sharper output distribution and stronger separability from ID data. We demonstrate the effectiveness of sparsification-based OOD detection on several benchmarks and establish competitive performance. Code is available at: https://github.com/deeplearning- wisc/dice.git.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 50 条
  • [31] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12
  • [32] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [33] Heatmap-based Out-of-Distribution Detection
    Hornauer, Julia
    Belagiannis, Vasileios
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2602 - 2611
  • [34] A Simple Framework for Robust Out-of-Distribution Detection
    Hur, Youngbum
    Yang, Eunho
    Hwang, Sung Ju
    IEEE ACCESS, 2022, 10 : 23086 - 23097
  • [35] Weighted Mutual Information for Out-Of-Distribution Detection
    De Bernardi, Giacomo
    Narteni, Sara
    Cambiaso, Enrico
    Muselli, Marco
    Mongelli, Maurizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 318 - 331
  • [36] Language Models as Reasoners for Out-of-Distribution Detection
    Kirchheim, Konstantin
    Ortmeier, Frank
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 379 - 390
  • [37] Exploring feature sparsity for out-of-distribution detection
    Chen, Qichao
    Li, Kuan
    Chen, Zhiyuan
    Maul, Tomas
    Yin, Jianping
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] An Information Theoretical View for Out-of-Distribution Detection
    Hu, Jinjing
    Liu, Wenrui
    Chang, Hong
    Mai, Bingpeng
    Shan, Shiguang
    Chen, Xilin
    COMPUTER VISION - ECCV 2024, PT LV, 2025, 15113 : 418 - 435
  • [39] Out-of-distribution Detection with Boundary Aware Learning
    Pei, Sen
    Zhang, Xin
    Fan, Bin
    Meng, Gaofeng
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 235 - 251
  • [40] A Critical Analysis of Document Out-of-Distribution Detection
    Gu, Jiuxiang
    Ming, Yifei
    Zhou, Yi
    Kuen, Jason
    Morariu, Vlad I.
    Zhao, Handong
    Zhang, Ruiyi
    Barmpalios, Nikolaos
    Liu, Anqi
    Li, Yixuan
    Sun, Tong
    Nenkova, Ani
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 4973 - 4999