DICE: Leveraging Sparsification for Out-of-Distribution Detection

被引:42
|
作者
Sun, Yiyou [1 ]
Li, Yixuan [1 ]
机构
[1] Comp Scof Wisconsin Madison, Madison, WI 53706 USA
来源
COMPUTER VISION, ECCV 2022, PT XXIV | 2022年 / 13684卷
关键词
Out-of-distribution detection; Sparsification; NETWORKS;
D O I
10.1007/978-3-031-20053-3_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Previous methods commonly rely on an OOD score derived from the overparameterized weight space, while largely overlooking the role of sparsification. In this paper, we reveal important insights that reliance on unimportant weights and units can directly attribute to the brittleness of OOD detection. To mitigate the issue, we propose a sparsification-based OOD detection framework termed DICE. Our key idea is to rank weights based on a measure of contribution, and selectively use the most salient weights to derive the output for OOD detection. We provide both empirical and theoretical insights, characterizing and explaining the mechanism by which DICE improves OOD detection. By pruning away noisy signals, DICE provably reduces the output variance for OOD data, resulting in a sharper output distribution and stronger separability from ID data. We demonstrate the effectiveness of sparsification-based OOD detection on several benchmarks and establish competitive performance. Code is available at: https://github.com/deeplearning- wisc/dice.git.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 50 条
  • [21] Towards In-Distribution Compatible Out-of-Distribution Detection
    Wu, Boxi
    Jiang, Jie
    Ren, Haidong
    Du, Zifan
    Wang, Wenxiao
    Li, Zhifeng
    Cai, Deng
    He, Xiaofei
    Lin, Binbin
    Liu, Wei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10333 - 10341
  • [22] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [23] On the Impact of Spurious Correlation for Out-of-Distribution Detection
    Ming, Yifei
    Yin, Hang
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10051 - 10059
  • [24] Provable Guarantees for Understanding Out-of-Distribution Detection
    Morteza, Peyman
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7831 - 7840
  • [25] Your Out-of-Distribution Detection Method is Not Robust!
    Azizmalayeri, Mohammad
    Moakhar, Arshia Soltani
    Zarei, Arman
    Zohrabi, Reihaneh
    Manzuri, Mohammad Taghi
    Rohban, Mohammad Hossein
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [26] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [28] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [29] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [30] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339