On the Smarandache ceil function and the Dirichlet divisor function

被引:0
作者
Ren Dongmei [1 ]
机构
[1] Xian Jiaotong Univ, Res Ctr Basic Sci, Xian 710049, Shaanxi, Peoples R China
来源
Research on Smarandache Problems in Number Theory (Vol II), Proceedings | 2005年
关键词
Smafandache Ceil function; Dirichlet divisor function; mean value; asymptotic formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is using the elementary methods to study the mean value properties of the composite function involving Dirichlet divisor function and Smarandache ceil function, and give an interesting asymptotic formula for it.
引用
收藏
页码:51 / 54
页数:4
相关论文
共 50 条
[21]   Lower bounds for the moments of the derivatives of the riemann zeta-function and dirichlet L-functions [J].
Sono, Keiju .
LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (04) :420-434
[22]   Lower bounds for the moments of the derivatives of the Riemann zeta-function and Dirichlet L-functions [J].
Keiju Sono .
Lithuanian Mathematical Journal, 2012, 52 :420-434
[23]   On the mean value of a new arithmetical function [J].
Yang Cundian ;
Liu Duansen .
Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, :75-77
[24]   On the Mean Value of a New Arithmetical Function [J].
Wang, Mingjun .
MECHANICAL ENGINEERING AND GREEN MANUFACTURING II, PTS 1 AND 2, 2012, 155-156 :396-400
[25]   ON THE INDEX OF COMPOSITION OF THE EULER FUNCTION AND OF THE SUM OF DIVISORS FUNCTION [J].
De Koninck, Jean-Marie ;
Luca, Florian .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (02) :155-167
[26]   A number theoretic function and its mean value [J].
Ren Ganglian .
Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, :19-21
[27]   An arithmetical function and its mean value formula [J].
Ren Zhibin ;
Zhao Xiaopeng .
Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, :95-97
[28]   A number theoretic function and its mean value [J].
Du Jianli .
Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, :115-117
[29]   On the function σδ(n) [J].
Stankus E. .
Lithuanian Mathematical Journal, 1997, 37 (1) :74-80
[30]   On a sum involving small arithmetic function and the integral part function [J].
Li, Jiamin ;
Ma, Jing .
JOURNAL OF NUMBER THEORY, 2023, 247 :35-45