Moment approach to the bootstrap current in nonaxisymmetric toroidal plasmas using δf Monte Carlo methods

被引:6
|
作者
Matsuyama, A. [1 ]
Isaev, M. Yu. [2 ]
Watanabe, K. Y. [3 ]
Hanatani, K. [4 ]
Suzuki, Y. [3 ]
Nakajima, N. [3 ]
Cooper, W. A. [5 ]
Tran, T. M. [5 ]
机构
[1] Kyoto Univ, Grad Sch Energy Sci, Kyoto 6110011, Japan
[2] RRC Kurchatov Inst, Nucl Fus Inst, Moscow 123182, Russia
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan
[5] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Suisse, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
method of moments; Monte Carlo methods; plasma collision processes; plasma kinetic theory; plasma simulation; plasma toroidal confinement; plasma transport processes; stellarators; LARGE HELICAL DEVICE; NEOCLASSICAL TRANSPORT; COEFFICIENTS; SYSTEMS; COLLISIONALITY; CONFIGURATIONS; STELLARATORS; CONFINEMENT; IMPURITIES; SIMULATION;
D O I
10.1063/1.3121223
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To evaluate the bootstrap current in nonaxisymmetric toroidal plasmas quantitatively, a delta f Monte Carlo method is incorporated into the moment approach. From the drift-kinetic equation with the pitch-angle scattering collision operator, the bootstrap current and neoclassical conductivity coefficients are calculated. The neoclassical viscosity is evaluated from these two monoenergetic transport coefficients. Numerical results obtained by the delta f Monte Carlo method for a model heliotron are in reasonable agreement with asymptotic formulae and with the results obtained by the variational principle.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Test of bootstrap current models using high-βp EAST-demonstration plasmas on DIII-D
    Ren, Q.
    Lao, L. L.
    Garofalo, A. M.
    Holcomb, C. T.
    Solomon, W. M.
    Belli, E. A.
    Smith, S. P.
    Meneghini, O.
    Qian, J.
    Li, G.
    Wan, B.
    Ding, S.
    Gong, X.
    Xu, G.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (02)
  • [42] Valuation of R&D Sequential Exchange Options Using Monte Carlo Approach
    Flavia Cortelezzi
    Giovanni Villani
    Computational Economics, 2009, 33 : 209 - 236
  • [43] Flood frequency estimation using a joint probability approach within a Monte Carlo framework
    Svensson, Cecilia
    Kjeldsen, Thomas R.
    Jones, David A.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2013, 58 (01): : 8 - 27
  • [44] Dark and Illuminated Current Simulation of Bulk Heterojunction Solar Cell using Kinetic Monte Carlo
    Baidya, Prabin M.
    Biesecker, Matthew
    Barroughi, Mahdi Farrokh
    2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2013, : 2690 - 2693
  • [45] Study on silicon drift detector efficiency using Monte-Carlo simulation and experimental methods
    Guo, Siming
    Wu, Jinjie
    Zhang, Jian
    Fan, Zihao
    Che, Weina
    Li, Mengshi
    Hou, Dongjie
    Wang, Ji
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 8543 - 8545
  • [46] Method for Reliability Analysis of Distribution Grid Communications Using PRMs-Monte Carlo Methods
    Armendariz, M.
    Gonzalez, R.
    Korman, M.
    Nordstrom, L.
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [47] Evaluation of rotating slant-hole SPECT mammography using Monte Carlo simulation methods
    Baird, WH
    Frey, EC
    Tsui, BMW
    Wang, YC
    Wessell, DE
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (01) : 105 - 109
  • [48] Reinforcement Learning in Card Game Environments Using Monte Carlo Methods and Artificial Neural Networks
    Baykal, Omer
    Alpaslan, Ferda Nur
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 618 - 623
  • [49] Performing Parallel Monte Carlo and Moment Equations Methods for Ito and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc
    Guidoum, Arsalane Chouaib
    Boukhetala, Kamal
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 96 (02): : 1 - 82
  • [50] Uncertainty metric in model-based eddy current inversion using the adaptive Monte Carlo method
    Fan, Mengbao
    Wu, Genlong
    Cao, Binghua
    Sarkodie-Gyan, Thomson
    Li, Zhixiong
    Tian, Guiyun
    MEASUREMENT, 2019, 137 : 323 - 331