Realizable Set Invariance Conditions for Cyber-Physical Systems

被引:16
作者
Gurriet, Thomas [1 ]
Nilsson, Petter [1 ]
Singletary, Andrew [1 ]
Ames, Aaron D. [1 ]
机构
[1] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA
来源
2019 AMERICAN CONTROL CONFERENCE (ACC) | 2019年
基金
美国国家科学基金会;
关键词
D O I
10.23919/acc.2019.8815332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There is currently a gap between control theoretical results and the reality of robotic implementations-this makes it difficult to transfer analytical guarantees to practice. This problem is especially troubling when it comes to safety guarantees for safety-critical systems. In this paper we seek to help bridge this gap. We first make a clear theoretical distinction between a system and a model, and outline how the two need to be related for guarantees to transfer from the latter to the former. We then introduce various imperfections into the model, including uncertainty in actuation and sensing, as well as time discretization effects from digital control implementations. These assumptions lead to new criteria for controlled invariance to be realizable. We investigate these criteria and propose a digital control implementation for enforcing safety in the presence of uncertainty. Our ideas are illustrated with a numerical example where a ground robot satisfies safety constraints in the presence of perception noise.
引用
收藏
页码:3642 / 3649
页数:8
相关论文
共 26 条
[1]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[2]  
Aubin J. -P., 2009, Viability theory, DOI 10.1007/978-0-8176-4910-4
[3]   The System-Level Simplex Architecture for Improved Real-Time Embedded System Safety [J].
Bak, Stanley ;
Chivukula, Deepti K. ;
Adekunle, Olugbemiga ;
Sun, Mu ;
Caccamo, Marco ;
Sha, Lui .
15TH IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATION SYMPOSIUM: RTAS 2009, PROCEEDINGS, 2009, :99-107
[4]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[5]   A Convex Optimization Approach to Synthesizing Bounded Complexity l∞ Filters [J].
Blanchini, Franco ;
Sznaier, Mario .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (01) :219-224
[6]  
Blanchini F, 2008, SYST CONTROL-FOUND A, P1
[7]  
Box G. E. P., 1979, Robustness in statistics, P201, DOI [DOI 10.1016/B978-0-12-438150-6.50018-2, 10.1016/B978-0-12-438150-6.50018-2]
[8]  
Boy GA, 2014, ANNU REV CONTROL, V38, P1, DOI [10.1016/j.arcontrol.2014.03.001, 10.1016/j.arcontrol.2014.03.0013]
[9]  
Chai J, 2017, P AMER CONTR CONF, P1199, DOI 10.23919/ACC.2017.7963116
[10]  
Clarke FH, 1998, Nonsmooth analysis and control theory, DOI DOI 10.1007/B97650