Efficient quantum simulation for thermodynamics of infinite-size many-body systems in arbitrary dimensions

被引:11
|
作者
Ran, Shi-Ju [1 ,2 ]
Xi, Bin [3 ]
Peng, Cheng [4 ]
Su, Gang [4 ,5 ,6 ]
Lewenstein, Maciej [2 ,7 ]
机构
[1] Capital Normal Univ, Dept Phys, Beijing 100048, Peoples R China
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[3] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, POB 4588, Beijing 100049, Peoples R China
[5] Kavli Inst Theoret Sci, Beijing, Peoples R China
[6] CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[7] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
基金
北京市自然科学基金;
关键词
DENSITY-MATRIX RENORMALIZATION; BOSE-EINSTEIN CONDENSATION; ST-TRANSFORMATION APPROACH; ANALYTIC SOLUTIONS; PRODUCT STATES; SPIN LIQUIDS; TRANSITION; ALGORITHM; DYNAMICS; CHAINS;
D O I
10.1103/PhysRevB.99.205132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we propose to simulate many-body thermodynamics of infinite-size quantum lattice models in one, two, and three dimensions, in terms of few-body models of only O(10) sites, which we coin as quantum entanglement simulators (QES's). The QES is described by a temperature-independent Hamiltonian, with the boundary interactions optimized by the tensor network methods to mimic the entanglement between the bulk and environment in a finite-size canonical ensemble. The reduced density matrix of the physical bulk then gives that of the infinite-size canonical ensemble under interest. We show that the QES can, for instance, accurately simulate varieties of many-body phenomena, including finite-temperature crossover and algebraic excitations of the one-dimensional spin liquid, the phase transitions and low-temperature physics of the two- and three-dimensional antiferromagnets, and the crossovers of the two-dimensional topological system. Our work provides an efficient way to explore the thermodynamics of intractable quantum many-body systems with easily accessible systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Simulation methods for open quantum many-body systems
    Weimer, Hendrik
    Kshetrimayum, Augustine
    Orus, Roman
    REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
  • [2] QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions
    Choi, Jae-yoon
    Hild, Sebastian
    Zeiher, Johannes
    Schauss, Peter
    Rubio-Abadal, Antonio
    Yefsah, Tarik
    Khemani, Vedika
    Huse, David A.
    Bloch, Immanuel
    Gross, Christian
    SCIENCE, 2016, 352 (6293) : 1547 - 1552
  • [3] Emergent Thermodynamics in a Quenched Quantum Many-Body System
    Dorner, R.
    Goold, J.
    Cormick, C.
    Paternostro, M.
    Vedral, V.
    PHYSICAL REVIEW LETTERS, 2012, 109 (16)
  • [4] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [5] Size consistency of tensor network methods for quantum many-body systems
    Wang, Zhen
    Han, Yongjian
    Guo, Guang-Can
    He, Lixin
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [6] Preparation of many-body states for quantum simulation
    Ward, Nicholas J.
    Kassal, Ivan
    Aspuru-Guzik, Alan
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):
  • [7] QUANTUM SIMULATION OF SIMPLE MANY-BODY DYNAMICS
    Fan, Yale
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (05)
  • [8] Quantum trajectories and open many-body quantum systems
    Daley, Andrew J.
    ADVANCES IN PHYSICS, 2014, 63 (02) : 77 - 149
  • [9] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [10] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130