PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA

被引:9
|
作者
Rodriguez Alves, Jose M. [1 ]
Nascimento, Jose M. P. [1 ,2 ]
Bioucas-Dias, Jose M. [1 ,3 ]
Plaza, Antonio [4 ]
Silva, Vitor [5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Inst Super Engn Lisboa, Lisbon, Portugal
[3] Univ Tech Lisbon, Inst Super Tecn, P-1100 Lisbon, Portugal
[4] Univ Extremadura, Hyperspectral Comp Lab, Caceres, Spain
[5] Univ Coimbra, Inst Telecommunicacoes, DEEC, P-3000 Coimbra, Portugal
关键词
Hyperspectral Unmixing; Sparse Regression; Graphics Processing Unit; Parallel Methods; ENDMEMBER EXTRACTION; COMPONENT ANALYSIS;
D O I
10.1109/IGARSS.2013.6723057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
引用
收藏
页码:1446 / 1449
页数:4
相关论文
共 50 条
  • [21] Structured Sparse Method for Hyperspectral Unmixing
    Zhu, Feiyun
    Wang, Ying
    Xiang, Shiming
    Fan, Bin
    Pan, Chunhong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 88 : 101 - 118
  • [22] Compound regularized multiple sparse Bayesian learning algorithm for sparse unmixing of hyperspectral data
    Kong Fan-Qiang
    Guo Wen-Jun
    Shen Qiu
    Wang Dan-Dan
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2016, 35 (02) : 219 - 226
  • [23] SPARSE AND LOW RANK HYPERSPECTRAL UNMIXING
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 229 - 232
  • [24] Deblurring and Sparse Unmixing for Hyperspectral Images
    Zhao, Xi-Le
    Wang, Fan
    Huang, Ting-Zhu
    Ng, Michael K.
    Plemmons, Robert J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4045 - 4058
  • [25] RECENT DEVELOPMENTS IN SPARSE HYPERSPECTRAL UNMIXING
    Iordache, Marian-Daniel
    Plaza, Antonio
    Bioucas-Dias, Jose
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1281 - 1284
  • [26] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [27] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488
  • [28] Robust Sparse Unmixing for Hyperspectral Imagery
    Wang, Dan
    Shi, Zhenwei
    Cui, Xinrui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1348 - 1359
  • [29] SPARSE FILTERING BASED HYPERSPECTRAL UNMIXING
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [30] A Two-Phase Multiobjective Sparse Unmixing Approach for Hyperspectral Data
    Jiang, Xiangming
    Gong, Maoguo
    Li, Hao
    Zhang, Mingyang
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 508 - 523