PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA

被引:9
作者
Rodriguez Alves, Jose M. [1 ]
Nascimento, Jose M. P. [1 ,2 ]
Bioucas-Dias, Jose M. [1 ,3 ]
Plaza, Antonio [4 ]
Silva, Vitor [5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Inst Super Engn Lisboa, Lisbon, Portugal
[3] Univ Tech Lisbon, Inst Super Tecn, P-1100 Lisbon, Portugal
[4] Univ Extremadura, Hyperspectral Comp Lab, Caceres, Spain
[5] Univ Coimbra, Inst Telecommunicacoes, DEEC, P-3000 Coimbra, Portugal
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Hyperspectral Unmixing; Sparse Regression; Graphics Processing Unit; Parallel Methods; ENDMEMBER EXTRACTION; COMPONENT ANALYSIS;
D O I
10.1109/IGARSS.2013.6723057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
引用
收藏
页码:1446 / 1449
页数:4
相关论文
共 21 条
  • [1] [Anonymous], 2010, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, DOI DOI 10.1109/WHISPERS.2010.5594929
  • [2] Bioucas-Dias J., 2012, IEEE J SEL TOPICS AP, V99
  • [3] Bioucas-Dias J. M., 2010, P SPIE IMAGE SIGNAL, V7830, P1
  • [4] Boyd S., 2011, FOUND TRENDS MACH LE, V3, P1, DOI [10.1561/2200000016, DOI 10.1561/2200000016]
  • [5] A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction
    Chan, Tsung-Han
    Ma, Wing-Kin
    Ambikapathi, ArulMurugan
    Chi, Chong-Yung
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4177 - 4193
  • [6] Learning Sparse Codes for Hyperspectral Imagery
    Charles, Adam S.
    Olshausen, Bruno A.
    Rozell, Christopher J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (05) : 963 - 978
  • [7] Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
  • [8] Greer J. B., 2012, IEEE T SIGNAL PROCES, V21, P213
  • [9] Guo Z., 2009, P SOC PHOTO-OPT INS, V7334
  • [10] Sparse Unmixing of Hyperspectral Data
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2014 - 2039