Abelian Calabi-Yau threefolds: Neron models and rational points

被引:0
作者
Bogomolov, Fedor [1 ,2 ]
Halle, Lars Halvard [3 ]
Pazuki, Fabien [3 ]
Tanimoto, Sho [4 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[4] Kumamoto Univ, Fac Sci, Dept Math, Kurokami 2-39-1, Kumamoto 8608555, Japan
基金
英国工程与自然科学研究理事会;
关键词
DENSITY; DEGENERATIONS; VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study arithmetic properties of Calabi-Yau threefolds fibered by abelian surfaces: their Neron models and potential density of rational points.
引用
收藏
页码:367 / 392
页数:26
相关论文
共 50 条
[31]   EXPLICIT EQUATIONS FOR MIRROR FAMILIES TO LOG CALABI-YAU SURFACES [J].
Barrott, Lawrence Jack .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) :139-165
[32]   Triviality of fibered Calabi-Yau manifolds without singular fibers [J].
Tosatti, Valentino ;
Zhang, Yuguang .
MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) :905-918
[33]   Mirror symmetry, Tyurin degenerations and fibrations on Calabi-Yau manifolds [J].
Doran, Charles F. ;
Harder, Andrew ;
Thompson, Alan .
STRING-MATH 2015, 2017, 96 :101-139
[34]   Finite distance problem on the moduli of non-Kahler Calabi-Yau partial derivative(partial derivative)over-bar-threefolds [J].
Lee, Tsung-Ju .
MATHEMATISCHE ANNALEN, 2025, 392 (02) :1541-1583
[35]   TROPICAL CORRESPONDENCE FOR SMOOTH DEL PEZZO LOG CALABI-YAU PAIRS [J].
Graefnitz, Tim .
JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (04) :687-749
[36]   Semistable degenerations of Calabi-Yau manifolds and mirror P=W conjectures [J].
Lee, Sukjoo .
FORUM OF MATHEMATICS SIGMA, 2024, 12
[37]   Birational boundedness of rationally connected Calabi-Yau 3-folds [J].
Chen, Weichung ;
Cerbo, Gabriele Di ;
Han, Jingjun ;
Jiang, Chen ;
Svaldi, Roberto .
ADVANCES IN MATHEMATICS, 2021, 378
[38]   The integral Hodge conjecture for two-dimensional Calabi-Yau categories [J].
Perry, Alexander .
COMPOSITIO MATHEMATICA, 2022, 158 (02) :287-333
[39]   Gluing and deformation of asymptotically cylindrical Calabi-Yau manifolds in complex dimension three [J].
Talbot, Tim .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 63 :84-119
[40]   Conifold transitions in M-theory on Calabi-Yau fourfolds with background fluxes [J].
Intriligator, Kenneth ;
Jockers, Hans ;
Mayr, Peter ;
Morrison, David R. ;
Plesser, M. Ronen .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (03) :601-699