Abelian Calabi-Yau threefolds: Neron models and rational points

被引:0
作者
Bogomolov, Fedor [1 ,2 ]
Halle, Lars Halvard [3 ]
Pazuki, Fabien [3 ]
Tanimoto, Sho [4 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[4] Kumamoto Univ, Fac Sci, Dept Math, Kurokami 2-39-1, Kumamoto 8608555, Japan
基金
英国工程与自然科学研究理事会;
关键词
DENSITY; DEGENERATIONS; VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study arithmetic properties of Calabi-Yau threefolds fibered by abelian surfaces: their Neron models and potential density of rational points.
引用
收藏
页码:367 / 392
页数:26
相关论文
共 50 条
  • [21] Weak Coupling, Degeneration and Log Calabi-Yau Spaces
    Donagi, Ron
    Katz, Sheldon
    Wijnholt, Martijn
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2013, 9 (04) : 665 - 738
  • [22] The Sarkisov program for Mori fibred Calabi-Yau pairs
    Corti, Alessio
    Kaloghiros, Anne-Sophie
    ALGEBRAIC GEOMETRY, 2016, 3 (03): : 370 - 384
  • [23] Gromov-Hausdorff collapsing of Calabi-Yau manifolds
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (01) : 93 - 113
  • [24] Classification of double octic Calabi-Yau threefolds with h1,2 ≤ 1 defined by an arrangement of eight planes
    Cynk, Slawomir
    Kocel-Cynk, Beata
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (01)
  • [25] On the Calabi-Yau Compactifications of Toric Landau-Ginzburg Models for Fano Complete Intersections
    Przyjalkowski, V. V.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 104 - 110
  • [26] Non-minimal elliptic threefolds at infinite distance. Part I. Log Calabi-Yau resolutions
    Alvarez-Garcia, Rafael
    Lee, Seung-Joo
    Weigand, Timo
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [27] DEGENERATIONS OF RICCI-FLAT CALABI-YAU MANIFOLDS
    Rong, Xiaochun
    Zhang, Yuguang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (04)
  • [28] Boundedness of log Calabi-Yau pairs of Fano type
    Hacon, Christopher D.
    Xi, Chenyang
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) : 1699 - 1716
  • [29] Correspondences between modular Calabi-Yau fiber products
    Kapustka, Michal
    MANUSCRIPTA MATHEMATICA, 2009, 130 (01) : 121 - 135
  • [30] EXPLICIT EQUATIONS FOR MIRROR FAMILIES TO LOG CALABI-YAU SURFACES
    Barrott, Lawrence Jack
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 139 - 165