Abelian Calabi-Yau threefolds: Neron models and rational points

被引:0
作者
Bogomolov, Fedor [1 ,2 ]
Halle, Lars Halvard [3 ]
Pazuki, Fabien [3 ]
Tanimoto, Sho [4 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[4] Kumamoto Univ, Fac Sci, Dept Math, Kurokami 2-39-1, Kumamoto 8608555, Japan
基金
英国工程与自然科学研究理事会;
关键词
DENSITY; DEGENERATIONS; VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study arithmetic properties of Calabi-Yau threefolds fibered by abelian surfaces: their Neron models and potential density of rational points.
引用
收藏
页码:367 / 392
页数:26
相关论文
共 50 条
[21]   Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections [J].
Chen, Jheng-Jie .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) :3793-3809
[22]   Weak Coupling, Degeneration and Log Calabi-Yau Spaces [J].
Donagi, Ron ;
Katz, Sheldon ;
Wijnholt, Martijn .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2013, 9 (04) :665-738
[23]   The Sarkisov program for Mori fibred Calabi-Yau pairs [J].
Corti, Alessio ;
Kaloghiros, Anne-Sophie .
ALGEBRAIC GEOMETRY, 2016, 3 (03) :370-384
[24]   Gromov-Hausdorff collapsing of Calabi-Yau manifolds [J].
Gross, Mark ;
Tosatti, Valentino ;
Zhang, Yuguang .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (01) :93-113
[25]   Classification of double octic Calabi-Yau threefolds with h1,2 ≤ 1 defined by an arrangement of eight planes [J].
Cynk, Slawomir ;
Kocel-Cynk, Beata .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (01)
[26]   Non-minimal elliptic threefolds at infinite distance. Part I. Log Calabi-Yau resolutions [J].
Alvarez-Garcia, Rafael ;
Lee, Seung-Joo ;
Weigand, Timo .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08)
[27]   On the Calabi-Yau Compactifications of Toric Landau-Ginzburg Models for Fano Complete Intersections [J].
Przyjalkowski, V. V. .
MATHEMATICAL NOTES, 2018, 103 (1-2) :104-110
[28]   DEGENERATIONS OF RICCI-FLAT CALABI-YAU MANIFOLDS [J].
Rong, Xiaochun ;
Zhang, Yuguang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (04)
[29]   Boundedness of log Calabi-Yau pairs of Fano type [J].
Hacon, Christopher D. ;
Xi, Chenyang .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) :1699-1716
[30]   Correspondences between modular Calabi-Yau fiber products [J].
Kapustka, Michal .
MANUSCRIPTA MATHEMATICA, 2009, 130 (01) :121-135