Scattering at the Anderson transition:: Power-law banded random matrix model

被引:19
|
作者
Mendez-Bermudez, J. A.
Varga, I.
机构
[1] Max Planck Inst Dynam & Selbstorg, D-37073 Gottingen, Germany
[2] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[3] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[4] Budapesti Muszaki & Gazdasagtudomanyi Egyetem, Fizikai Intezet, Elmeleti Fizika Tanszek, H-1521 Budapest, Hungary
[5] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[6] Univ Marburg, Wissensch Liches Zentrum Mat Wissensch, D-35032 Marburg, Germany
关键词
D O I
10.1103/PhysRevB.74.125114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the scattering properties of a periodic one-dimensional system at criticality represented by the so-called power-law banded random matrix model at the metal-insulator transition. We focus on the scaling of Wigner delay times tau and resonance widths Gamma. We find that the typical values of tau and Gamma (calculated as the geometric mean) scale with the system size L as tau(typ)proportional to L-D1 and Gamma(typ)proportional to L-(2-D2), where D-1 is the information dimension and D-2 is the correlation dimension of eigenfunctions of the corresponding closed system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bootstrap Percolation in Power-Law Random Graphs
    Amini, Hamed
    Fountoulakis, Nikolaos
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (01) : 72 - 92
  • [42] Power-law models of totally anisotropic scattering
    Tuntsov, A. V.
    Bignall, H. E.
    Walker, M. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (03) : 2562 - 2568
  • [43] Scattering of the φ8 kinks with power-law asymptotics
    Belendryasova, Ekaterina
    Gani, Vakhid A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 414 - 426
  • [44] Power-Law Random Graphs' Robustness: Link Saving and Forest Fire Model
    Leri, Marina
    Pavlov, Yury
    AUSTRIAN JOURNAL OF STATISTICS, 2014, 43 (04) : 229 - 236
  • [45] Power-law exponent of the Bouchaud-Mezard model on regular random networks
    Ichinomiya, Takashi
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [47] Power-law parametrized quintessence model
    Rahvar, Sohrab
    Movahed, M. Sadegh
    PHYSICAL REVIEW D, 2007, 75 (02)
  • [48] Random walks with power-law fluctuations in the number of steps
    Annibaldi, SV
    Hopcraft, KI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8635 - 8645
  • [49] Phase transition and power-law coarsening in an Ising-doped voter model
    Lipowski, Adam
    Lipowska, Dorota
    Ferreira, Antonio Luis
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [50] On the Discretization of the Power-Law Hemolysis Model
    Faghih, Mohammad M.
    Islam, Ahmed
    Sharp, M. Keith
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (01):