Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes

被引:781
作者
Balzarotti, Francisco [1 ]
Eilers, Yvan [1 ]
Gwosch, Klaus C. [1 ]
Gynna, Arvid H. [2 ]
Westphal, Volker [1 ]
Stefani, Fernando D. [3 ,4 ]
Elf, Johan [2 ]
Hell, Stefan W. [1 ,5 ,6 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NanoBiophoton, Gottingen, Germany
[2] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden
[3] Consejo Nacl Invest Cient & Tecn, Ctr Invest Bionanociencias CIBION, Buenos Aires, DF, Argentina
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Buenos Aires, DF, Argentina
[5] Max Planck Inst Med Res, Dept Opt Nanoscopy, Heidelberg, Germany
[6] German Canc Res Ctr, Opt Nanoscopy Div, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
DISTANCE MEASUREMENTS; LOCALIZATION ANALYSIS; STIMULATED-EMISSION; SINGLE MOLECULES; DNA ORIGAMI; MICROSCOPY; FLUOROPHORES; NANOSCOPY; DYNAMICS; PROTEIN;
D O I
10.1126/science.aak9913
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolutionmicroscopy, MINFLUXattained similar to 1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond.
引用
收藏
页码:606 / 612
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 1930, The Physical Principles of Quantum Theory
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   POSITION MEASUREMENT WITH A RESOLUTION AND NOISE-LIMITED INSTRUMENT [J].
BOBROFF, N .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (06) :1152-1157
[5]   Method for trapping and manipulating nanoscale objects in solution [J].
Cohen, AE ;
Moerner, WE .
APPLIED PHYSICS LETTERS, 2005, 86 (09) :1-3
[6]  
Dai MJ, 2016, NAT NANOTECHNOL, V11, P798, DOI [10.1038/nnano.2016.95, 10.1038/NNANO.2016.95]
[7]  
Dempsey GT, 2011, NAT METHODS, V8, P1027, DOI [10.1038/NMETH.1768, 10.1038/nmeth.1768]
[8]   Precisely and accurately localizing single emitters in fluorescence microscopy [J].
Deschout, Hendrik ;
Zanacchi, Francesca Cella ;
Mlodzianoski, Michael ;
Diaspro, Alberto ;
Bewersdorf, Joerg ;
Hess, Samuel T. ;
Braeckmans, Kevin .
NATURE METHODS, 2014, 11 (03) :253-266
[9]   Probing transcription factor dynamics at the single-molecule level in a living cell [J].
Elf, Johan ;
Li, Gene-Wei ;
Xie, X. Sunney .
SCIENCE, 2007, 316 (5828) :1191-1194
[10]   Molecular Orientation Affects Localization Accuracy in Superresolution Far-Field Fluorescence Microscopy [J].
Engelhardt, Johann ;
Keller, Jan ;
Hoyer, Patrick ;
Reuss, Matthias ;
Staudt, Thorsten ;
Hell, Stefan W. .
NANO LETTERS, 2011, 11 (01) :209-213