Pipelined HAC Estimation Engines for Multivariate Time Series

被引:0
作者
Guo, Ce [1 ]
Luk, Wayne [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2014年 / 77卷 / 1-2期
基金
英国工程与自然科学研究理事会;
关键词
Time series; HAC estimation; Big data; Acceleration engine; FPGA; MATRIX; HETEROSKEDASTICITY; RETURNS;
D O I
10.1007/s11265-014-0897-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimation, or HAC estimation in short, is one of the most important techniques in time series analysis and forecasting. It serves as a powerful analytical tool for hypothesis testing and model verification. However, HAC estimation for long and high-dimensional time series is computationally expensive. This paper describes a pipeline-friendly HAC estimation algorithm derived from a mathematical specification, by applying transformations to eliminate conditionals, to parallelise arithmetic, and to promote data reuse in computation. We discuss an initial hardware architecture for the proposed algorithm, and propose two optimised architectures to improve the worst-case performance. Experimental systems based on proposed architectures demonstrate high performance especially for long time series. One experimental system achieves up to 12 times speedup over an optimised software system on 12 CPU cores.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 25 条
  • [11] Correlation analysis on GPU systems using NVIDIA's CUDA
    Gembris, Daniel
    Neeb, Markus
    Gipp, Markus
    Kugel, Andreas
    Maenner, Reinhard
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (04) : 275 - 280
  • [12] Hamilton J. D., 2020, TIME SERIES ANAL
  • [13] Rapid RNA Folding: Analysis and Acceleration of the Zuker Recurrence
    Jacob, Arpith C.
    Buhler, Jeremy D.
    Chamberlain, Roger D.
    [J]. 2010 18TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2010), 2010, : 87 - 94
  • [14] RETURNS TO BUYING WINNERS AND SELLING LOSERS - IMPLICATIONS FOR STOCK-MARKET EFFICIENCY
    JEGADEESH, N
    TITMAN, S
    [J]. JOURNAL OF FINANCE, 1993, 48 (01) : 65 - 91
  • [15] Lin Colin Yu, 2011, 2011 International Conference on Field Programmable Logic and Applications, P305, DOI 10.1109/FPL.2011.62
  • [16] Macqueen J., 1967, 5 BERK S MATH STAT P, P281, DOI DOI 10.1007/S11665-016-2173-6
  • [17] Narayanan R., 2007, C DESIGN AUTOMATION, P1
  • [18] A SIMPLE, POSITIVE SEMIDEFINITE, HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX
    NEWEY, WK
    WEST, KD
    [J]. ECONOMETRICA, 1987, 55 (03) : 703 - 708
  • [19] AUTOMATIC LAG SELECTION IN COVARIANCE-MATRIX ESTIMATION
    NEWEY, WK
    WEST, KD
    [J]. REVIEW OF ECONOMIC STUDIES, 1994, 61 (04) : 631 - 653
  • [20] Accelerated fluctuation analysis by graphic cards and complex pattern formation in financial markets
    Preis, Tobias
    Virnau, Peter
    Paul, Wolfgang
    Schneider, Johannes J.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11